相關習題
 0  234406  234414  234420  234424  234430  234432  234436  234442  234444  234450  234456  234460  234462  234466  234472  234474  234480  234484  234486  234490  234492  234496  234498  234500  234501  234502  234504  234505  234506  234508  234510  234514  234516  234520  234522  234526  234532  234534  234540  234544  234546  234550  234556  234562  234564  234570  234574  234576  234582  234586  234592  234600  266669 

科目: 來源: 題型:選擇題

17.設命題P:?n∈N,n2≤2n,則¬P為(  )
A.?n∈N,n2≤2nB.?n∈N,n2>2nC.?n∈N,n2>2nD.?n∈N,n2=2n

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知$\frac{cos(π-2α)}{{sin(α-\frac{π}{4})}}=-\frac{{\sqrt{2}}}{2}$,則(cosα+sinα)等于( 。
A.-$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知F是拋物線C:y2=8x的焦點,直線y=kx-3k與C交于M,N兩點,與C的準線相交于點P,|$\overrightarrow{MF}$|=4,且$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),則λ=( 。
A.$\frac{8}{5}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.某校高中一年級組織學生參加了環(huán)保知識競賽,并抽取了其中20名學生的成績進行分析.右圖是這20名學生競賽成績(單位:分)的頻率分布直方圖,其分組為[100,110),[110,120),…,[130,140),[140,150].
(Ⅰ)求圖中a的值及成績分別落在[100,110)與[110,120)中的學生人數(shù);
(Ⅱ) 學校決定從成績在[110,120)的學生中任選2名進行座談,求這2人的成績都在[110,120)的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知:a>0,b>0,a+4b=4
(1)求ab的最大值;
(2)求$\frac{1}{a}$+$\frac{4}$的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設{an}是等比數(shù)列,公比q=$\sqrt{2}$,Sn為{an}的前n項和.記Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,設Tm為數(shù)列{Tn}的最大項,則m=( 。
A.2B.1C.4D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

11.下列函數(shù)中,最小值為2的是( 。
A.f(x)=x+$\frac{1}{x}$B.f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.y=$\sqrt{x-1}$+$\frac{1}{\sqrt{x-1}}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.函數(shù)f(x)=a$\sqrt{1-{x}^{2}}$+$\sqrt{1+x}$+$\sqrt{1-x}$(a∈R).
(Ⅰ)設t=$\sqrt{1+x}$+$\sqrt{1-x}$,求t的取值范圍,并把f(x)表示為t的函數(shù)φ(t);
(Ⅱ)記f(x)的最大值為g(a),求g(a)的表達式.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知二次函數(shù)f(x)滿足不等式f(x)<5x-2的解集是(1,2),且f(x)的圖象過點(-1,-1).記函數(shù)g(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,x>0}\\{-f(x),x≤0}\end{array}\right.$.
(Ⅰ)求f(x)的解析式,并畫出g(x)的圖象;
(Ⅱ)求關于x的方程2g2(x)-5g(x)+2=0不同的根的個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知冪函數(shù)f(x)=(m2-3m+3)xm+1為偶函數(shù),g(x)=loga[f(x)-ax](a>0且a≠1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)在區(qū)間(2,3)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案