相關(guān)習(xí)題
 0  234735  234743  234749  234753  234759  234761  234765  234771  234773  234779  234785  234789  234791  234795  234801  234803  234809  234813  234815  234819  234821  234825  234827  234829  234830  234831  234833  234834  234835  234837  234839  234843  234845  234849  234851  234855  234861  234863  234869  234873  234875  234879  234885  234891  234893  234899  234903  234905  234911  234915  234921  234929  266669 

科目: 來源: 題型:選擇題

19.在五張牌中有三張K和兩張A,如果不放回地一次抽取兩張牌.記“第2次抽到撲克牌K的概率為x”,“在第一次抽到撲克牌K的條件下,第二次抽到撲克牌K的概率為y”,則實數(shù)x,y依次為( 。
A.$\frac{3}{5}{,^{\;}}\frac{1}{2}$B.$\frac{3}{5}{,^{\;}}\frac{3}{5}$C.$\frac{1}{2}{,^{\;}}\frac{1}{2}$D.$\frac{3}{5}{,^{\;}}\frac{2}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)a、b為正數(shù),$\frac{1}{a}$+$\frac{1}$≤2$\sqrt{2}$,(a-b)2=4(ab)3,則a+b=( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知一個口袋中裝有n個紅球(n≥1且n∈N)和2個白球,從中有放回地連續(xù)摸三次,每次摸出兩個球,若兩個球顏色不同則為中獎,否則不中獎.
(1)當(dāng)n=3時,設(shè)三次摸球中(每次摸球后放回)中獎的次數(shù)為ξ,求的ξ分布列;
(2)記三次摸球中(每次摸球后放回)恰有兩次中獎的概率為P,當(dāng)n取多少時,P最大.

查看答案和解析>>

科目: 來源: 題型:填空題

16.從一批含有6件正品,3件次品的產(chǎn)品中,有放回地抽取2次,每次抽取1件,設(shè)抽得次品數(shù)為X,則D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若函數(shù)f(x)=|ax+x2-xlna-t|-1(0<a<1)有零點,則實數(shù)t的最小值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)m為常數(shù),拋物線y=x2+2mx-m3-2m2,則當(dāng)m分別取0,-3,-2時,在平面直角坐標(biāo)系中圖象最恰當(dāng)?shù)氖牵ㄟ@里省略了坐標(biāo)軸)( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:填空題

13.若存在正數(shù)a和實數(shù)x0,使得f(x0+a)=f(x0)+a成立,則稱區(qū)間[x0,x0+a]為函數(shù)f(x)的“公平增長區(qū)間”.則下列四個函數(shù):
①f(x)=2x-1
②f(x)=||x|-1|,
③$f(x)=\sqrt{{x^2}-1}$,
④f(x)=$\sqrt{{x}^{2}-1}$-x,x∈[1,+∞)
其中有“公平增長區(qū)間”的為②④(填出所有正確結(jié)論的番號).

查看答案和解析>>

科目: 來源: 題型:解答題

12.將邊長分別為1、2、3、4、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形.由小到大,依次記各陰影部分所在的圖形為第1個、第2個、…、第n個陰影部分圖形.設(shè)前n個陰影部分圖形的面積的平均值為f(n).記數(shù)列{an}滿足a1=1,an+1=$\left\{\begin{array}{l}f(n)\;\;當(dāng)n為奇數(shù)\\ f({a_n})當(dāng)n為偶數(shù)\end{array}$.
(1)求f(n)的表達(dá)式;
(2)寫出a2、a3的值,并求數(shù)列{an}的通項公式.
(3)記$|\begin{array}{l}{a}&\\{c}&6wuo6sq\end{array}|$=ad-bc.若bn=an+s(s∈R),且$|\begin{array}{l}{_{n}}&{_{n+2}}\\{_{n+1}}&{_{n+1}}\end{array}|$<0恒成立,求s的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知集合C={(x,y)|xy-3x+y+1=0},數(shù)列{an}的首項a1=3,且當(dāng)n≥2時,點(an-1,an)∈C,數(shù)列{bn}滿足bn=$\frac{1}{{1-{a_n}}}$.
(1)試判斷數(shù)列{bn}是否是等差數(shù)列,并說明理由;
(2)若$\lim_{n→∞}(\frac{s}{a_n}+\frac{t}{b_n})=1$(s,t∈R),求st的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”的第二步是( 。
A.證明假設(shè)n=k(k≥1且k∈N)時正確,可推出n=k+1正確
B.證明假設(shè)n=2k+1(k≥1且k∈N)時正確,可推出n=2k+3正確
C.證明假設(shè)n=2k-1(k≥1且k∈N)時正確,可推出n=2k+1正確
D.證明假設(shè)n≤k(k≥1且k∈N)時正確,可推出n=k+2時正確

查看答案和解析>>

同步練習(xí)冊答案