相關(guān)習(xí)題
 0  234745  234753  234759  234763  234769  234771  234775  234781  234783  234789  234795  234799  234801  234805  234811  234813  234819  234823  234825  234829  234831  234835  234837  234839  234840  234841  234843  234844  234845  234847  234849  234853  234855  234859  234861  234865  234871  234873  234879  234883  234885  234889  234895  234901  234903  234909  234913  234915  234921  234925  234931  234939  266669 

科目: 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x-2m在[0,$\frac{π}{2}$]上有兩個零點,則m的取值范圍為(  )
A.[$\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.[$\frac{\sqrt{3}}{2}$,1)D.($\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知高與底面半徑相等的圓錐的體積為$\frac{8π}{3}$,其側(cè)面積與球O的表面積相等,則球O的表面積為4$\sqrt{2}$π.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.在三棱錐P-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,PA=PC=2,AC中點為M,cos∠PMB=$\frac{{\sqrt{3}}}{3}$,則此三棱錐的外接球的表面積為(  )
A.$\frac{3π}{2}$B.C.D.$\sqrt{6}$π

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-kx(k∈R),g(x)=lnx.
(1)若函數(shù)y=f(x)與y=g(x)的圖象有公共點,求實數(shù)k的取值范圍;
(2)設(shè)函數(shù)h(x)=f(x)-g(x),?a,b>0(a≠b),若?c>0,使得h′(c)=$\frac{h(a)-h(b)}{a-b}$,求證:$\sqrt{ab}$<c<$\frac{a+b}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖②.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在三棱錐P-ABC中,已知∠ABC=90°,AB=BC=2,PA⊥平面ABC,且PA=4,則該三棱錐外接球的表面積為( 。
A.B.24πC.16πD.32π

查看答案和解析>>

科目: 來源: 題型:選擇題

13.一個棱長為2的正方體被一個平面截去一部分后,剩余幾何體的三視圖如圖所示,則此幾何體的體積為(  )
A.$\frac{22}{3}$B.$\frac{20}{3}$C.6D.4

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{alnx+b}{x}$(a≤2且a≠0),函數(shù)f(x)在點(1,f(1))處的切線過點(3,0)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)與函數(shù)g(x)=a+2-x-$\frac{2}{x}$的圖象在區(qū)間(0,2)有且只有一個交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知直線y=k(x-1)(k>0)與拋物線y2=4x交于A,B兩點,若△AOB的面積為2$\sqrt{2}$,則|AB|=( 。
A.2B.6C.4D.8

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,動圓C過點F(1,0),且與直線x=-1相切于點P.
(Ⅰ)求圓心C的軌跡Γ的方程;
(Ⅱ)過點F任作一直線交軌跡Γ于A,B兩點,設(shè)PA,PF,PB的斜率分別為k1,k2,k3,問:$\frac{{{k_1}+{k_3}}}{k_2}$是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案