相關(guān)習(xí)題
 0  234881  234889  234895  234899  234905  234907  234911  234917  234919  234925  234931  234935  234937  234941  234947  234949  234955  234959  234961  234965  234967  234971  234973  234975  234976  234977  234979  234980  234981  234983  234985  234989  234991  234995  234997  235001  235007  235009  235015  235019  235021  235025  235031  235037  235039  235045  235049  235051  235057  235061  235067  235075  266669 

科目: 來源: 題型:填空題

17.如圖是網(wǎng)絡(luò)工作者經(jīng)常用來解釋網(wǎng)絡(luò)運作的蛇形模型:數(shù)字1出現(xiàn)在第1行;數(shù)字2,3出現(xiàn)在第2行;數(shù)字6,5,4(從左至右)出現(xiàn)在第3行;數(shù)字7,8,9,10出現(xiàn)在第4行;依此類推,則第63行從左至右的第7個數(shù)是2010.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.圓C1和直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圓C1和直線C2的直角坐標(biāo)方程.
(2)求圓C1和直線C2交點的極坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=2sinx(sinx-cosx).
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)若$A∈(0,\frac{π}{4})$,且$f(\frac{A}{2})=1-\frac{{4\sqrt{2}}}{5}$,求cosA.

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)數(shù)列{an}的通項公式為an=pn+q(n∈N*,P>0).?dāng)?shù)列{bn}定義如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=$\frac{1}{2},q=-\frac{2}{3}$,求b3;
(Ⅱ)若p=2,q=-1,求數(shù)列{bm}的前2m項和公式;
(Ⅲ)是否存在p和q,使得bm=4m+1(m∈N*)?如果存在,求p和q的取值范圍;如不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

13.(1)證明三倍角的余弦公式:cos3θ=4cos3θ-3cosθ;
(2)利用等式sin36°=cos54°,求sin18°的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.求方程(sinx+cosx)tanx=2cosx在區(qū)間(0,π)上的解.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-lnx.
(1)求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)${f_{\;}}(x)=\frac{1}{{{4^x}+2}}$,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目: 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根據(jù)以上事實,由歸納推理可得:當(dāng)n∈N+時,fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知圓C:(x-a)2+(y-2+a)2=1,點A(3,0),O為坐標(biāo)原點.
(Ⅰ)若a=1,求圓C過點A的切線方程;
(Ⅱ)若直線l:x-y+1=0與圓C交于M、N兩點,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{3}{2}$,求a的值;
(Ⅲ)若圓C上存在點P,滿足|OP|=2|AP|,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案