相關(guān)習(xí)題
 0  235161  235169  235175  235179  235185  235187  235191  235197  235199  235205  235211  235215  235217  235221  235227  235229  235235  235239  235241  235245  235247  235251  235253  235255  235256  235257  235259  235260  235261  235263  235265  235269  235271  235275  235277  235281  235287  235289  235295  235299  235301  235305  235311  235317  235319  235325  235329  235331  235337  235341  235347  235355  266669 

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-(a+4)x+4.
(1)若對任意的x∈(0,1],都有f(x)>(a-1)x2恒成立,求實(shí)數(shù)a的取值范圍;
(2)解不等式f(x)>0.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若直線AB的方程為$\sqrt{3}$x+y-7=0,則直線AB的傾斜角是( 。
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目: 來源: 題型:選擇題

20.對于函數(shù)f(x)=ex-x在區(qū)間[1,2]上的最值,下列描述正確的是( 。
A.最小值為e-1,沒有最大值B.最大值為e2-2,沒有最小值
C.既沒有最大值,也沒有最小值D.最小值為e-1,最大值為e2-2

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$.
(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)P(1,1)處的切線方程;
(2)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)若關(guān)于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知冪函數(shù)$y={x}^{{p}^{2}-2p-3}$(p∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),實(shí)數(shù)a滿足$({a}^{2}-1)^{\frac{p}{3}}<(3a+3)^{\frac{p}{3}}$,則a的取值范圍是(1,4).

查看答案和解析>>

科目: 來源: 題型:選擇題

17.如果偶函數(shù)在[a,b]具有最大值,那么該函數(shù)在[-b.-a]有( 。
A.最大值B.最小值C.沒有最大值D.沒有最小值

查看答案和解析>>

科目: 來源: 題型:填空題

16.如圖,P-ABCD是棱長均為1的正四棱錐,頂點(diǎn)P在平面ABCD內(nèi)的正投影為點(diǎn)E,點(diǎn)E在平面PAB內(nèi)的正投影為點(diǎn)F,則 tan∠PEF=$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.直線3x+4y-12=0與兩坐標(biāo)軸的交點(diǎn)為A,B,其中點(diǎn)A在x軸上,點(diǎn)B在y軸上.
(1)求交點(diǎn)A和B的坐標(biāo);
(2)求以原點(diǎn)為圓心且與直線AB相切的圓的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|2x+1|.
(1)解不等式:f(x)≥x+3;
(2)若不等式f(x)-2|x-1|≥m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知橢圓的焦點(diǎn)F1(0,-1),F(xiàn)2(0,1),P為橢圓上一動點(diǎn),且|F1F2|是|PF1|與|PF2|的等差中項(xiàng),則橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1C.x2+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$+y2=1

查看答案和解析>>

同步練習(xí)冊答案