相關(guān)習(xí)題
 0  235168  235176  235182  235186  235192  235194  235198  235204  235206  235212  235218  235222  235224  235228  235234  235236  235242  235246  235248  235252  235254  235258  235260  235262  235263  235264  235266  235267  235268  235270  235272  235276  235278  235282  235284  235288  235294  235296  235302  235306  235308  235312  235318  235324  235326  235332  235336  235338  235344  235348  235354  235362  266669 

科目: 來源: 題型:解答題

12.已知f(x)=|2x-1|+|5x-1|
(1)求f(x)>x+1的解集;
(2)若m=2-n,對(duì)?m,n∈(0,+∞),恒有$\frac{1}{m}+\frac{4}{n}≥f(x)$成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4.
(1)若l的參數(shù)方程中的$t=-\sqrt{2}$時(shí),得到M點(diǎn),求M的極坐標(biāo)和曲線C直角坐標(biāo)方程;
(2)若點(diǎn)P(0,2),l和曲線C交于A,B兩點(diǎn),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}+1$.
(1)若y=f(x)在(0,+∞)恒單調(diào)遞減,求a的取值范圍;
(2)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求a的取值范圍并證明x1+x2>2.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖在棱錐P-ABCD中,ABCD為矩形,PD⊥面ABCD,PB=2,PB與面PCD成45°角,PB與面ABD成30°角.
(1)在PB上是否存在一點(diǎn)E,使PC⊥面ADE,若存在確定E點(diǎn)位置,若不存在,請(qǐng)說明理由;
(2)當(dāng)E為PB中點(diǎn)時(shí),求二面角P-AE-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.為了解市民在購買食物時(shí)看營養(yǎng)說明與性別的關(guān)系,現(xiàn)在社會(huì)上隨機(jī)詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認(rèn)為:“性別與讀營養(yǎng)說明有關(guān)系”,并說明理由;
(2)把頻率當(dāng)概率,若從社會(huì)上的男性市民中隨機(jī)抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).
男性女性總計(jì)
讀營養(yǎng)說明402060
不讀營養(yǎng)說明202040
總計(jì)6040100
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k0
 
0.100.0500.0250.010
k0
 
2.7063.8415.0246.635

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,滿足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求證:數(shù)列$\{\frac{S_n}{n}\}$為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

5.若函數(shù)$f(x)=\frac{x}{2}+ln\sqrt{x}$在某區(qū)間[a,b]上的值域?yàn)閇ta,tb],則t的取值范圍($\frac{1}{2}$,$\frac{1+e}{2e}$).

查看答案和解析>>

科目: 來源: 題型:填空題

4.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,許多數(shù)學(xué)問題都是以詩歌的形式呈現(xiàn),其中一首詩可改編如下:“甲乙丙丁戊,酒錢欠千文,甲兄告乙弟,三百我還與,轉(zhuǎn)差十幾文,各人出怎?”意為:五兄弟,酒錢欠千文,甲還三百,甲乙丙丁戊還錢數(shù)依次成等差數(shù)列,在這個(gè)問題中丁該還150文錢.

查看答案和解析>>

科目: 來源: 題型:填空題

3.A公司有職工代表40人,B公司有職工代表60人,用分層抽樣的方法在這兩個(gè)公司的職工代表中選取10人,則A公司應(yīng)該選取4人.

查看答案和解析>>

同步練習(xí)冊(cè)答案