相關(guān)習(xí)題
 0  235349  235357  235363  235367  235373  235375  235379  235385  235387  235393  235399  235403  235405  235409  235415  235417  235423  235427  235429  235433  235435  235439  235441  235443  235444  235445  235447  235448  235449  235451  235453  235457  235459  235463  235465  235469  235475  235477  235483  235487  235489  235493  235499  235505  235507  235513  235517  235519  235525  235529  235535  235543  266669 

科目: 來(lái)源: 題型:填空題

8.已知10a=2,b=lg5,則a+b=1.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.設(shè)g(x)為定義在R上的奇函數(shù),且g(x)不恒為0,若$f(x)=(\frac{1}{{{a^x}-1}}-\frac{1})g(x)$(a>0且a≠1)為偶函數(shù),則常數(shù)b=( 。
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.若a>b>0,0<c<1,則( 。
A.logac<logbcB.ca>cbC.ac<abD.logca<logcb

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.若偶函數(shù)f(x)在區(qū)間[-3,-1]上有最大值6,則f(x)在區(qū)間[1,3]上有( 。
A.最大值6B.最小值6C.最大值-6D.最小值-6

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.給出下列四個(gè)說(shuō)法:
①f(x)=x0與g(x)=1是同一個(gè)函數(shù);
②y=f(x),x∈R與y=f(x+1),x∈R可能是同一個(gè)函數(shù);
③y=f(x),x∈R與y=f(t),t∈R是同一個(gè)函數(shù);
④定義域和值域相同的函數(shù)是同一個(gè)函數(shù).
其中正確的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.如圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象.為了得到這個(gè)函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上所有的點(diǎn)(  )
A.向左平移$\frac{π}{3}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍
B.向左平移$\frac{π}{3}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍
C.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍
D.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.已知集合A中只含有1,a2兩個(gè)元素,則實(shí)數(shù)a不能取的值為±1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx+x2-1,g(x)=ex-e
( I)試判斷f(x)的單調(diào)性;
( II)若對(duì)于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=xsinx+cosx
(I)若f(x)>k對(duì)任意的x∈(0,π)恒成立,求實(shí)數(shù)k的取值范圍;
(II)判斷f(x)在區(qū)間(2,3)上的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.(參考數(shù)據(jù):$\sqrt{2}$≈1.4,$\sqrt{6}$≈2.4)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知△ABC的面積為S,且$\overrightarrow{AB}•\overrightarrow{AC}=S$.
( I)求tan2A的值;
( II)若cosC=$\frac{3}{5}$,且|$\overrightarrow{AC}-\overrightarrow{AB}$|=2,求△ABC的面積為S.

查看答案和解析>>

同步練習(xí)冊(cè)答案