相關(guān)習(xí)題
 0  235383  235391  235397  235401  235407  235409  235413  235419  235421  235427  235433  235437  235439  235443  235449  235451  235457  235461  235463  235467  235469  235473  235475  235477  235478  235479  235481  235482  235483  235485  235487  235491  235493  235497  235499  235503  235509  235511  235517  235521  235523  235527  235533  235539  235541  235547  235551  235553  235559  235563  235569  235577  266669 

科目: 來(lái)源: 題型:解答題

17.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且b2+c2-a2=bc.
(1)求角A的大;
(2)設(shè)函數(shù)$f(x)=sinx+2{cos^2}\frac{x}{2}-1,a=2,f(B)=\sqrt{2}$時(shí),求b.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.設(shè)過(guò)曲線f(x)=-ex-x(e為自然對(duì)數(shù)的底數(shù))上的任意一點(diǎn)的切線l1,總存在過(guò)曲線g(x)=mx-3sinx上的一點(diǎn)處的切線l2,使l1⊥l2,則m的取值范圍為[-2,3].

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.已知函數(shù)F(x)=f(x-1)+x2是定義在R上的奇函數(shù),若F(-1)=2,則f(0)=-3.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|x-2|.
(1)解不等式f(x+1)+f(x+2)<4;
(2)若?x∈R使得f(ax)+|a|f(x)≤4成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ex(x2+ax+a),實(shí)數(shù)是常數(shù).
(1)若a=2,函數(shù)y=f(x)的圖象上是否存在兩條相互垂直的切線,并說(shuō)明理由.
(2)若y=f(x)在[a,+∞)上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.正整數(shù)數(shù)列{an}滿足a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}-n,{a}_{n}>n}\\{{a}_{n}+n,{a}_{n}≤n}\end{array}\right.$,將數(shù)列{an}中所有值為1的項(xiàng)的項(xiàng)數(shù)按從小到大的順序依次排列,得到數(shù)列{nk},則nk+1=3nk+1(k=1,2,3,…).(用nk表示)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.某市家庭煤氣的使用量xcm3和燃?xì)赓M(fèi)f(x)(元)滿足關(guān)系$f(x)=\left\{\begin{array}{l}C,0<x≤A\\ C+B({x-A}),x>A\end{array}\right.$,已知某家庭今年前三個(gè)月的燃?xì)赓M(fèi)如表:
 月份 用氣量煤氣費(fèi)
 一月份 4m3 4元
 二月份 25m3 14元
 三月份35m3 19元
若四月份該家庭使用了20cm3的煤氣,則其燃?xì)赓M(fèi)為11.5元.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.集合A={x|x<3},B={x|x2-5x<0},則A∩B是( 。
A.{x|0<x<3}B.{x|0<x<5}C.{x|3<x<5}D.{x|x<0}

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=lnx+x2-2ax+a2,a∈R.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[1,3]上不存在單調(diào)增區(qū)間,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0)的e=$\frac{\sqrt{3}}{2}$,焦距為2$\sqrt{3}$.
(1)求E的方程;
(2)設(shè)點(diǎn)A,B,C在E上運(yùn)動(dòng),A與B關(guān)于原點(diǎn)對(duì)稱,且|AC|=|CB|,當(dāng)△ABC的面積最小時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案