相關習題
 0  235633  235641  235647  235651  235657  235659  235663  235669  235671  235677  235683  235687  235689  235693  235699  235701  235707  235711  235713  235717  235719  235723  235725  235727  235728  235729  235731  235732  235733  235735  235737  235741  235743  235747  235749  235753  235759  235761  235767  235771  235773  235777  235783  235789  235791  235797  235801  235803  235809  235813  235819  235827  266669 

科目: 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距為$2\sqrt{2}$,F(xiàn)1,F(xiàn)2為其左右焦點,M為橢圓上一點,且∠F1MF2=60°,${S_{△{F_1}M{F_2}}}=\frac{{2\sqrt{3}}}{3}$
(1)求橢圓C的方程;
(2)設直線l:y=kx+m與橢圓C相交于A、B兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標原點,求證:平行四邊形OAPB的面積為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,四棱錐V-ABCD的底面是直角梯形,VA⊥面ABCD,AD∥BC,AD⊥CD,VA=AD=CD=$\frac{1}{2}$BC=a,點E是棱VA上不同于A,V的點.
(1)求證:無論點E在VA如何移動都有AB⊥CE;
(2)設二面角A-BE-D的大小為α,直線VC與平面ABCD所成的角為β,試確定點E的位置使$tanαtanβ=\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.在平行四邊形ABCD中,已知AB=2,AD=l,∠BAD=60°,若E,F(xiàn)分別是BC,CD的中點,則$\overrightarrow{BF}•\overrightarrow{DE}$=( 。
A.2B.-2C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,其中俯視圖與左視圖均為半徑是1的圓,則這個幾何體的體積是(  )
A.$\frac{4π}{3}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目: 來源: 題型:填空題

8.如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點,在這個正四面體中,有以下結論:
①GH與EF平行;
②BE與MN為異面直線;
③GH與AF成60°角;
④MN∥平面ADF;
其中正確結論的序號是③④.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知f(x)=($\frac{x-1}{x+1}$)2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1-$\sqrt{x}$)f-1(x)>a(a-$\sqrt{x}$)對區(qū)間x∈[$\frac{1}{4}$,$\frac{1}{2}$]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

6.魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結構,這種三維的拼插器具內部的凹凸部分(即榫卯結構)嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱.從外表上看,六根等長的正四棱柱體分成三組,經(jīng)90°榫卯起來,如圖3,若正四棱柱體的高為6,底面正方形的邊長為1,現(xiàn)將該魯班鎖放進一個球形容器內,則該球形容器的表面積的最小值為41π.(容器壁的厚度忽略不計)

查看答案和解析>>

科目: 來源: 題型:填空題

5.偶函數(shù)f(x)的圖象關于直線x=3對稱,f(4)=4,則f(-2)=4.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,則n=$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知a、b∈R,且2ab+2a2+2b2-9=0,若M為a2+b2的最小值,則約束條件$\left\{\begin{array}{l}0≤y≤\sqrt{{M^2}-{x^2}}\\ x-y≥-M\\ x+y≤M.\end{array}\right.$所確定的平面區(qū)域內整點(橫坐標縱坐標均為整數(shù)的點)的個數(shù)為(  )
A.9B.13C.16D.18

查看答案和解析>>

同步練習冊答案