相關(guān)習(xí)題
 0  235849  235857  235863  235867  235873  235875  235879  235885  235887  235893  235899  235903  235905  235909  235915  235917  235923  235927  235929  235933  235935  235939  235941  235943  235944  235945  235947  235948  235949  235951  235953  235957  235959  235963  235965  235969  235975  235977  235983  235987  235989  235993  235999  236005  236007  236013  236017  236019  236025  236029  236035  236043  266669 

科目: 來源: 題型:填空題

9.在平面直角坐標(biāo)系中,點(diǎn)P為橢圓$\frac{{x}^{2}}{3}$+y2=1上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線x-y+6=0的最大距離為4$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知兩點(diǎn)A(-1,2),B(m,3).且實(shí)數(shù)m∈[-$\frac{\sqrt{3}}{3}$-1,$\sqrt{3}$-1],求直線AB的傾斜角α的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在長(zhǎng)方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,求直線A1B與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.如圖,在三棱錐A-BCD中,AB⊥AD,AC⊥AD,∠BAC=60°,AB=AC=AD=4,點(diǎn)P,Q分別在側(cè)面ABC棱AD上運(yùn)動(dòng),PQ=2,M為線段PQ中點(diǎn),當(dāng)P,Q運(yùn)動(dòng)時(shí),點(diǎn)M的軌跡把三棱錐A-BCD分成上、下兩部分的體積之比等于$\frac{π}{{48\sqrt{3}-π}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.如圖,P為三棱柱ABC-A1B1C1的側(cè)棱AA1上的一個(gè)動(dòng)點(diǎn),若四棱錐P-BCC1B1的體積為V,則三棱柱ABC-A1B1C1的體積為$\frac{3}{2}V$(用V表示)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.在棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,Q為底面△ABC內(nèi)一點(diǎn),若點(diǎn)Q到三個(gè)側(cè)面的距離分別為3、4、5,則以線段PQ為直徑的球的體積為(  )
A.$\frac{125π}{6}$B.$\frac{{125\sqrt{2}π}}{3}$C.$\frac{50π}{3}$D.$\frac{25π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知α,β是相異兩平面,m,n是相異兩直線,則下列命題中不正確的是 ( 。
A.若m∥n,m⊥α,則n⊥αB.若m⊥α,m⊥β,則α∥β
C.若m∥α,α∩β=n,則m∥nD.若m⊥α,m?β,則α⊥β

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上任意一個(gè)動(dòng)點(diǎn)M到左焦點(diǎn)F1的距離的最大值 為$\sqrt{2}$+1
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線L的斜率為k,且過左焦點(diǎn)F1,與橢圓C相交于P、Q兩點(diǎn),若△PQF2的面積為$\frac{\sqrt{10}}{3}$,試求k的值及直線L的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且BE⊥PD.
(Ⅰ)求異面直線PA與CD所成的角的大;
(Ⅱ)求證:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大。

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,在幾何體P-ABCD中,平面ABCD⊥平面PAB,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點(diǎn).
(Ⅰ)求證EF∥平面PCD;
(Ⅱ)求直線DP與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案