相關(guān)習(xí)題
 0  235873  235881  235887  235891  235897  235899  235903  235909  235911  235917  235923  235927  235929  235933  235939  235941  235947  235951  235953  235957  235959  235963  235965  235967  235968  235969  235971  235972  235973  235975  235977  235981  235983  235987  235989  235993  235999  236001  236007  236011  236013  236017  236023  236029  236031  236037  236041  236043  236049  236053  236059  236067  266669 

科目: 來源: 題型:選擇題

2.如圖,正方形O′A′B′C′的邊長為2cm,它是水平放置的一個平面圖形的直觀圖,則原平面圖形的周長是(  )cm.
A.12B.16C.$4(1+\sqrt{3})$D.$4(1+\sqrt{2})$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{x^2}{4}-{y^2}=1$上的點P到點$(\sqrt{5},0)$的距離為5,則P到點$(-\sqrt{5},0)$的距離為( 。
A.1B.9C.1或9D.3

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+2|+|x-4|.
(1)求函數(shù)f(x)的最小值;
(2)若{x|f(x)≤t2-t}∩{x|-3≤x≤5}≠∅.求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

19.在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:${ρ^2}=\frac{12}{{2+{{cos}^2}θ}}$,直線l:$2ρcos(θ-\frac{π}{6})=\sqrt{3}$.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C的兩個交點分別為A、B,求|AB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g'(x)=f(x)+2,求g(x)的極值點;
(3)若$h(x)=-\frac{1}{3}(cbx-\frac{bc}{x})+2lnx(c∈R)$,當(dāng)x1,x2∈(0,+∞)時,不等式$[\frac{{h({x_1})}}{x_2}-\frac{{h({x_2})}}{x_1}]({x_1}-{x_2})<0$恒成立,求c的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,點M,N分別在邊AB和AC上(M點和B點不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽'MN,使頂點A'落在邊BC上(A'點和B點不重合).設(shè)∠ANM=θ
(1)用θ表示線段AM的長度,并寫出θ的取值范圍;
(2)求線段A'N長度的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知等差數(shù)列{an},a3=4,a2+a6=10.
(1)求{an}的通項公式;
(2)求$\left\{{\frac{a_n}{2^n}}\right\}$的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知△ABC中,a、b、c分別是角A、B、C的對邊,有b2+c2=a2+bc
(1)求角A的大。
(2)求$f(x)=sin(x-A)+\sqrt{3}cosx$的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知a∈R,命題p:?x∈[-2,-1],x2-a≥0,命題q:?x∈R,x2+2ax-(a-2)=0.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知點A(7,1),B(1,a),若直線y=x與線段AB交于點C,且$\overrightarrow{AC}=2\overrightarrow{CB}$,則實數(shù)a=4.

查看答案和解析>>

同步練習(xí)冊答案