相關(guān)習題
 0  235909  235917  235923  235927  235933  235935  235939  235945  235947  235953  235959  235963  235965  235969  235975  235977  235983  235987  235989  235993  235995  235999  236001  236003  236004  236005  236007  236008  236009  236011  236013  236017  236019  236023  236025  236029  236035  236037  236043  236047  236049  236053  236059  236065  236067  236073  236077  236079  236085  236089  236095  236103  266669 

科目: 來源: 題型:解答題

9.已知矩形ABCD中,AB=2AD=4,E為CD的中點,沿AE將三角形AED折疊,使平面ADE⊥平面ABCE.
(1)求證:BE⊥AD;
(2)若CD=2$\sqrt{3}$,求直線AC與平面BDE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.定義在(0,+∞)上的單調(diào)函數(shù)f(x)滿足對一切x>0總有f[f(x)-log2x]=3,則g(x)=f(x)+x-4的零點個數(shù)是1(個).

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,AB為圓O的直徑,E是圓O上不同于A,B的動點,四邊形ABCD為矩形,且AB=2,AD=1,平面ABCD⊥平面ABE.
(1)求證:BE⊥平面DAE;
(2)當平面ABCD與平面CD E所成二面角為30°時,證明△ABE的面積為定值,并求出這個定值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.若拋物線C1:y2=2px的準線為x=-1,橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與拋物線C1的焦點重合,且以原點為圓心,橢圓C2的短半軸長為半徑的圓與直線y=x+$\sqrt{2}$相切.
(1)求橢圓C2的離心率;
(2)若0為坐標原點,過點(2,0)的直線l與橢圓C2相交于不同兩點A、B,且橢圓C2上一點E滿足t$\overrightarrow{OE}$-$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{0}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,在三棱錐A-BCD中,底面BCD是邊長為2的等邊三角形,側(cè)棱AB=AD=$\sqrt{2}$,AC=2,O、E、F分別是BD、BC、AC的中點.
(1)求證:EF∥平面ABD;
(2)求證:AO⊥平面BCD;
(3)求異面直線AB與CD所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)y=ax+2-2的圖象過的定點在函數(shù)y=-$\frac{n}{m}$x-$\frac{1}{m}$的圖象上,其中m,n為正數(shù),求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)y=kx2-4x-8在區(qū)間[4,16]上單調(diào)遞減,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知{an}為等差數(shù)列,且an≠0,公差d≠0.
(Ⅰ)證明:$\frac{{C}_{2}^{0}}{{a}_{1}}$-$\frac{{C}_{2}^{1}}{{a}_{2}}$+$\frac{{C}_{2}^{2}}{{a}_{3}}$=$\frac{2gq2i3eg^{2}}{{a}_{1}{a}_{2}{a}_{3}}$
(Ⅱ)根據(jù)下面幾個等式:$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$=$\fracj8oxzs7{{a}_{1}{a}_{2}}$;$\frac{{C}_{2}^{0}}{{a}_{1}}$-$\frac{{C}_{2}^{1}}{{a}_{2}}$+$\frac{{C}_{2}^{2}}{{a}_{3}}$=$\frac{2zpd3bzl^{2}}{{a}_{1}{a}_{2}{a}_{3}}$;$\frac{{C}_{3}^{0}}{{a}_{1}}$-$\frac{{C}_{3}^{1}}{{a}_{2}}$+$\frac{{C}_{3}^{2}}{{a}_{3}}$-$\frac{{C}_{3}^{3}}{{a}_{4}}$=$\frac{622gyrzg^{3}}{{a}_{1}{a}_{2}{a}_{3}{a}_{4}}$

;$\frac{{C}_{4}^{0}}{{a}_{1}}$-$\frac{{C}_{4}^{1}}{{a}_{2}}$+$\frac{{C}_{4}^{2}}{{a}_{3}}$-$\frac{{C}_{4}^{3}}{{a}_{4}}$+$\frac{{C}_{4}^{4}}{{a}_{5}}$=$\frac{24pi1dt3w^{4}}{{a}_{1}{a}_{2}{a}_{3}{a}_{4}{a}_{5}}$,…
試歸納出更一般的結(jié)論,并用數(shù)學歸納法證明.

查看答案和解析>>

科目: 來源: 題型:填空題

1.把曲線的極坐標方程$ρ=\sqrt{2}sin({\frac{π}{4}-θ})$化為曲線的標準方程為${({x-\frac{1}{2}})^2}+{({y+\frac{1}{2}})^2}=\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓E的兩個焦點分別為(0,-1)和(0,1),離心率e=$\frac{\sqrt{2}}{2}$
(1)求橢圓E的方程
(2)若直線l:y=kx+m(k≠0)與橢圓E交于不同的兩點A、B,且線段AB的垂直平分線過定點P(0,$\frac{1}{2}$),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案