相關(guān)習(xí)題
 0  235970  235978  235984  235988  235994  235996  236000  236006  236008  236014  236020  236024  236026  236030  236036  236038  236044  236048  236050  236054  236056  236060  236062  236064  236065  236066  236068  236069  236070  236072  236074  236078  236080  236084  236086  236090  236096  236098  236104  236108  236110  236114  236120  236126  236128  236134  236138  236140  236146  236150  236156  236164  266669 

科目: 來(lái)源: 題型:選擇題

17.已知定義在正實(shí)數(shù)集上的函數(shù)f(x)、g(x),g(x)≠0,f(x)=logax•g(x)(a>0且a≠1),f′(x)g(x)<f(x)g′(x),若關(guān)于t的方程[g(4)•t]2+1=f(4)•t有唯一解,則a的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.$\frac{1}{2}$或2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,${a}_{n}={(-1)}^{n}(2n-1)$,n∈N*
(Ⅰ)求S1,S2,S3
(Ⅱ)由(Ⅰ)推測(cè)Sn的公式,并用數(shù)學(xué)歸納法證明你的推測(cè).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,則輸出的S的值為( 。
A.-2015B.2016C.2014D.-2017

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

14.已知雙曲線x2-y2=1,則它的右焦點(diǎn)到它的漸近線的距離是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.定義一種新運(yùn)算“*”,對(duì)自然數(shù)n滿足以下等式:(1)1*1=1;(2)(n+1)*1=3(n*1),則2*1=3;n*1=3n-1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.已知直線l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),則“l(fā)1∥l2”是“a=-1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.已知z1=m2-(m2-3m)i,z2=(m2-4m+3)i+10(m∈R),若z1<z2,求實(shí)數(shù)m的取值范圍為{3}.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,直線l過(guò)點(diǎn)P(-1,2),傾斜角為$\frac{3π}{4}$.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)記直線l和曲線C的兩個(gè)交點(diǎn)分別為A,B,求|PA|+|PB|,|PA|•|PB|

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變,得到曲線C.
(1)求曲線C的參數(shù)方程;
(2)求曲線C上的點(diǎn)P(x,y),使得$z=x-2\sqrt{3}y$取得最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.為了調(diào)查患慢性氣管炎是否與吸煙有關(guān),調(diào)查了100名50歲以下的人,調(diào)查結(jié)果如下表:
患慢性氣管炎未患慢性氣管炎合計(jì)
吸煙202040
不吸煙55560
合計(jì)2575100
根據(jù)列聯(lián)表數(shù)據(jù),有99.9%的把握(填寫相應(yīng)的百分比)認(rèn)為患慢性氣管炎與吸煙有關(guān).
附:
P(K2≥k)  0.0500.0100.001
k   3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案