相關(guān)習(xí)題
 0  236089  236097  236103  236107  236113  236115  236119  236125  236127  236133  236139  236143  236145  236149  236155  236157  236163  236167  236169  236173  236175  236179  236181  236183  236184  236185  236187  236188  236189  236191  236193  236197  236199  236203  236205  236209  236215  236217  236223  236227  236229  236233  236239  236245  236247  236253  236257  236259  236265  236269  236275  236283  266669 

科目: 來源: 題型:填空題

6.函數(shù)$f(x)=\sqrt{1-{2^x}}$的定義域為{x|x≤0}.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=$\sqrt{2}$,F(xiàn)是BC的中點.
(Ⅰ)求證:DA⊥平面PAC
(Ⅱ)PD的中點為G,求證:CG∥平面PAF
(Ⅲ)求三棱錐A-CDG的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

4.冪函數(shù)y=f(x)的圖象經(jīng)過點(2,8),若f(a)=64則a的值為4.

查看答案和解析>>

科目: 來源: 題型:解答題

3.某校從學(xué)生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,四邊形ABCD是正方形,ED⊥平面ABCD,DE∥AF,AF=AD.
(1)求證:直線BF∥平面CDE;
(2)若直線BE與平面ADEF所成角的正弦值為$\frac{\sqrt{6}}{6}$,試推斷平面CEF與平面CDF是否垂直.說明你的理由.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個焦點為F1(-$\sqrt{3}$,0),M(1,y)(y>0)為橢圓上的一點,△MOF1的面積為$\frac{3}{4}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點T在圓x2+y2=1上,是否存在過點 A(2,0)的直線l交橢圓C于點 B,使$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),在以原點為極點,X軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求C的普通方程和l的傾斜角;
(2)若l和C交于A,B兩點,且Q(2,3),求|QA|+|QB|.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知數(shù)列{an}是等差數(shù)列,前n項和為 Sn且滿足a3-a1=4,S3=12.
(1)求數(shù)列{an}的通項公式; 
(2)設(shè)bn=an•2n-1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=2cos($\frac{π}{2}$-x)cos(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知A(1,3),B(a,1),C(-b,0),(a>0,b>0),若A,B,C三點共線,則$\frac{3}{a}$+$\frac{1}$的最小值是11+6$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案