相關(guān)習(xí)題
 0  236098  236106  236112  236116  236122  236124  236128  236134  236136  236142  236148  236152  236154  236158  236164  236166  236172  236176  236178  236182  236184  236188  236190  236192  236193  236194  236196  236197  236198  236200  236202  236206  236208  236212  236214  236218  236224  236226  236232  236236  236238  236242  236248  236254  236256  236262  236266  236268  236274  236278  236284  236292  266669 

科目: 來源: 題型:選擇題

16.用反證法證明“三角形中最多只有一個內(nèi)角是鈍角”的結(jié)論的否定是( 。
A.有兩個內(nèi)角是鈍角B.有三個內(nèi)角是鈍角
C.至少有兩個內(nèi)角是鈍角D.沒有一個內(nèi)角是鈍角

查看答案和解析>>

科目: 來源: 題型:選擇題

15.與直線2x-6y+1=0垂直,且與曲線f(x)=x3+3x2-1相切的直線方程是( 。
A.3x-y+2=0B.3x+y+2=0C.x+3y+2=0D.x-3y-2=0

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知正數(shù)數(shù)列{an}的前n項和Sn,滿足a1an=S1+Sn(n∈N*
(1)求{an}的通項公式;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求證:b1+b2+…+bn<2.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知函數(shù)f(x)=x2+2x+alnx
(1)若a=-4,求函數(shù)f(x)的極值;
(2)若a=1時,證明f(x+1)≤x2+5x+3
(3)當(dāng)t≥1時,不等式f(2t-1)≥2f(t)-3恒成立,試證明a≤2.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知數(shù)列{an},若a1,a2+1,a3成等差數(shù)列,數(shù)列{an+1}為公比為2的等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足bn=an•log2(an+1)(n∈N*),其前n項和為Tn,試求滿足Tn+$\frac{{n}^{2}+n}{2}$>2015的最小正整數(shù)n.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知數(shù)列an=$\left\{{\;}\right.\begin{array}{l}{3,n=1}\\{{2^{n-1}},n≥2}\end{array}$,Sn是該數(shù)列的前n項和,若Sn能寫成tp(t,p∈N*且t>1,p>1)的形式,則稱Sn為“指數(shù)型和”.則{Sn}中是“指數(shù)型和”的項的序號和為3.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知F是拋物線y2=4x的焦點,A、B是該拋物線上的點,|AF|+|BF|=5,則 線段AB的中點的橫坐標(biāo)為$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知i是虛數(shù)單位,且集合$M=\left\{{z|z={{({\frac{i-1}{i+1}})}^n},n∈{N^*}}\right\}$,則集合M的非空子集的個數(shù)為(  )
A.16B.15C.8D.7

查看答案和解析>>

科目: 來源: 題型:解答題

8.在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為$ρsin(\frac{π}{6}-θ)=m$(m為常數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}x=-1+2sinα\\ y=\sqrt{3}+2sinα\end{array}$(α為參數(shù))
(1)求直線l的直角坐標(biāo)方程和圓C的普通方程;
(2)若圓心C關(guān)于直線l的對稱點亦在圓上,求實數(shù)m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x
(1)當(dāng)a>0時,討論函數(shù)g(x)的單調(diào)性;
(2)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于A(x1,y1),B(x2,y2)兩點,其中x1<x2,證明$\frac{1}{{x}_{2}}<k<\frac{1}{{x}_{1}}$.

查看答案和解析>>

同步練習(xí)冊答案