相關習題
 0  236242  236250  236256  236260  236266  236268  236272  236278  236280  236286  236292  236296  236298  236302  236308  236310  236316  236320  236322  236326  236328  236332  236334  236336  236337  236338  236340  236341  236342  236344  236346  236350  236352  236356  236358  236362  236368  236370  236376  236380  236382  236386  236392  236398  236400  236406  236410  236412  236418  236422  236428  236436  266669 

科目: 來源: 題型:解答題

1.如圖,長方體ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E為D1C的中點.
(1)求三棱錐D1-ADE的體積.
(2)AC邊上是否存在一點M,使得D1A∥平面MDE?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x}-a(x<1)}\\{4(x-a)(x-2a)(x≥1)}\end{array}}\right.$.若f(x)=0恰有2個實數(shù)根,則實數(shù)a的取值范圍是$[\frac{1}{2},1)∪[2,+∞)$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.如圖,長方體ABCD-A1B1C1D1中,AB=3,BC=4,CC1=5,則沿著長方體表面從A到C1的最短路線長為$\sqrt{74}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=2017x+log2017x,則在R上,函數(shù)f(x)零點的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目: 來源: 題型:選擇題

17.如圖,已知兩點A(4,0),B(0,4),從點P(2,0)射出的光線經直線AB反射后射到直線OB上,再經直線OB反射后射到P點,則光線所經過的路程PM+MN+NP等于( 。
A.$2\sqrt{10}$B.6C.$3\sqrt{3}$D.$2\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知曲線C1:y=ax2上點P處的切線為l1,曲線C2:y=bx3上點A(1,b)處的切線為l2,且l1⊥l2,垂足M(2,2),求a、b的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知命題p:函數(shù)y=x2+mx+1在(-1,+∞)上單調遞增,命題q:對函數(shù)y=-4x2+4(2-m)x-1,y≤0恒成立.若p∨q為真,p∧q為假,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1B1中,AA1=2AB=2AD=4,點E在CC1上且C1E=3EC.利用空間向量解決下列問題:
(1)證明:A1C⊥平面BED;
(2)求銳二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

13.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(0<b<a)的半焦距為c,直線l經過雙曲線的右頂點和虛軸的上端點.已知原點到直線l的距離為$\frac{\sqrt{3}}{4}$c,則雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.假設關于某設備使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
若由資料知y對x呈線性相關關系.
試求:(1)線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的回歸系數(shù)$\stackrel{∧}{a}$,$\stackrel{∧}$;
(2)估計使用年限為10時,維修費用是多少?
(參考公式)$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-\stackrel{∧}\overline{x}}\end{array}\right.$,其中$\overline{x}=\frac{1}{n}\sum_{i=1}^n{x_i}$,$\overline{y}=\frac{1}{n}\sum_{i=1}^n{y_i}$.

查看答案和解析>>

同步練習冊答案