相關習題
 0  236287  236295  236301  236305  236311  236313  236317  236323  236325  236331  236337  236341  236343  236347  236353  236355  236361  236365  236367  236371  236373  236377  236379  236381  236382  236383  236385  236386  236387  236389  236391  236395  236397  236401  236403  236407  236413  236415  236421  236425  236427  236431  236437  236443  236445  236451  236455  236457  236463  236467  236473  236481  266669 

科目: 來源: 題型:解答題

11.已知長為2的線段A B兩端點A和B分別在x軸和y軸上滑動,線段AB的中點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)點P(x,y)是曲線C上的動點,求3x-4y的取值范圍;
(Ⅲ)已知定點Q(0,$\frac{2}{3}$),探究是否存在定點T(0,t)(t$≠\frac{2}{3}$)和常數(shù)λ滿足:對曲線C上任意一點S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

10.為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高二年級抽取了30名男生和20名女生的該學科成績,得到如圖所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

(Ⅰ)(i)請根據(jù)圖示,將2×2列聯(lián)表補充完整;
優(yōu)分非優(yōu)分總計
男生
女生
總計50
(ii)據(jù)列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認為“學科成績與性別有關”?
(Ⅱ)將頻率視作概率,從高二年級該學科成績中任意抽取3名學生的成績,求成績?yōu)閮?yōu)分人數(shù)X的分布列與數(shù)學期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知圓C:(x-3)2+(y-4)2=4.
(Ⅰ) 若直線l過點A(2,3)且被圓C截得的弦長為2$\sqrt{3}$,求直線l的方程;
(Ⅱ) 若直線l過點B(1,0)與圓C相交于P,Q兩點,求△CPQ的面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某網(wǎng)站對“愛飛客”飛行大會的日關注量x(萬人)與日點贊量y(萬次)進行了統(tǒng)計對比,得到表格如下:
x35679
y23345
由散點圖象知,可以用回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$來近似刻畫它們之間的關系.
(Ⅰ)求出y關于x的回歸直線方程,并預測日關注量為10萬人時的日點贊量;
(Ⅱ)一個三口之家參加“愛飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個白球和2個紅球的箱子中不放回地各摸出一個球,大人摸出每個紅球得獎金10元,小孩摸出1個紅球得獎金50元.求該三口之家所得獎金總額不低于50元的概率.
參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;    參考數(shù)據(jù):$\sum_{i=1}^{5}$xi2=200,$\sum_{i=1}^{5}$xiyi=112.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知△ABC中,A(1,3),BC邊所在的直線方程為y-1=0,AB邊上的中線所在的直線方程為x-3y+4=0.
(Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展開式中第二、三、四項的二項式系數(shù)成等差數(shù)列.
(Ⅰ)求n的值;
(Ⅱ)此展開式中是否有常數(shù)項?為什么?

查看答案和解析>>

科目: 來源: 題型:填空題

5.由計算機產生2n個0~1之間的均勻隨機數(shù)x1,x2,…xn,y1,y2,…yn,構成n個數(shù)對(x1,y1),(x2y2),…(xn,yn)其中兩數(shù)能與1構成鈍角三角形三邊的數(shù)對共有m個,則用隨機模擬的方法得到的圓周率π的近似值為$\frac{4m}{n}+2$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.以點(2,-3)為圓心且與直線2mx-y-2m-1=0(m∈R)相切的所有圓中,面積最大的圓的標準方程為(x-2)2+(y+3)2=5.

查看答案和解析>>

科目: 來源: 題型:填空題

3.執(zhí)行如圖程序,若輸出的結果是4,則輸入的x的值是2.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知等邊△ABC的邊長為2$\sqrt{3}$,動點P、M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最小值是(  )
A.$\frac{25}{4}$B.$\frac{31}{4}$C.$\frac{37-6\sqrt{3}}{4}$D.$\frac{37-2\sqrt{33}}{4}$

查看答案和解析>>

同步練習冊答案