相關(guān)習(xí)題
 0  236461  236469  236475  236479  236485  236487  236491  236497  236499  236505  236511  236515  236517  236521  236527  236529  236535  236539  236541  236545  236547  236551  236553  236555  236556  236557  236559  236560  236561  236563  236565  236569  236571  236575  236577  236581  236587  236589  236595  236599  236601  236605  236611  236617  236619  236625  236629  236631  236637  236641  236647  236655  266669 

科目: 來源: 題型:解答題

11.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=$\frac{1}{2}$,P是橢圓上的一點(diǎn),已知△PF1F2內(nèi)切圓半徑為1,內(nèi)心為I,且S${\;}_{△PI{F}_{1}}$+S${\;}_{△PI{F}_{2}}$=2.
(1)求橢圓E的方程;
(2)過橢圓的左焦點(diǎn)F1做兩條互相垂直的弦AB,CD,求|$\overrightarrow{AB}$|+|$\overrightarrow{CD}$|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+2=2an,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{lo{g}_{2}{a}_{n}}$,cn=$\frac{\sqrt{_{n}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$,求數(shù)列{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,1+cosωx),$\overrightarrow{n}$=(cosωx,1-cosωx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中ω>0,若f(x)的一條對稱軸離最近的對稱中心的距離為$\frac{π}{4}$.
(1)求f(x)的對稱中心;
(2)若g(x)=f(x)+m在區(qū)間[0,$\frac{π}{2}$]上存在兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.關(guān)于x的函數(shù)f(x)=$\frac{{x}^{3}+t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+2t}{{x}^{2}+2+cosx}$(t≠0)的最大值為m,最小值為n,且m+n=2017,則實(shí)數(shù)t的值為$\frac{2017}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知拋物線y2=2px(p>0),過焦點(diǎn)F,且傾斜角為60°的直線與拋物線交于A,B兩點(diǎn),若|AF|=6,則|BF|=2或18.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下面說法不正確的選項(xiàng)( 。
A.函數(shù)的單調(diào)區(qū)間可以是函數(shù)的定義域
B.函數(shù)的多個(gè)單調(diào)增區(qū)間的并集也是其單調(diào)增區(qū)間
C.具有奇偶性的函數(shù)的定義域定關(guān)于原點(diǎn)對稱
D.關(guān)于原點(diǎn)對稱的圖象一定是奇函數(shù)的圖象

查看答案和解析>>

科目: 來源: 題型:填空題

5.口袋內(nèi)裝有一些大小相同的紅球、白球和黑球,從中摸出1個(gè)球,摸出紅球的概率是0.41,摸出白球的概率是0.27,那么摸出黑球的概率是0.32.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知橢圓具有性質(zhì):若M、N是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM,kPN時(shí),那么kPM與kPN之積是與P點(diǎn)無關(guān)的定值.現(xiàn)將橢圓改為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),且kPM<0、kPN<0,則kPM+kPN的最大值為( 。
A.$-\frac{2b}{a}$B.$-\frac{2a}$C.$-\frac{{\sqrt{2}b}}{a}$D.$-\frac{{\sqrt{2}b}}{a}$

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{{\sqrt{2}}}{2}$,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為$\frac{{4\sqrt{2}}}{5}$時(shí),求k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù));在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=2sinθ;
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)若射線l:y=kx(x≥0)與曲線C1,C2的交點(diǎn)分別為A,B(A,B異于原點(diǎn)),當(dāng)斜率$k∈[1,\sqrt{3})$時(shí),求|OA|•|OB|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案