相關(guān)習(xí)題
 0  236564  236572  236578  236582  236588  236590  236594  236600  236602  236608  236614  236618  236620  236624  236630  236632  236638  236642  236644  236648  236650  236654  236656  236658  236659  236660  236662  236663  236664  236666  236668  236672  236674  236678  236680  236684  236690  236692  236698  236702  236704  236708  236714  236720  236722  236728  236732  236734  236740  236744  236750  236758  266669 

科目: 來源: 題型:選擇題

19.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),過F1的直線l與雙曲線的左右兩支分別交于點(diǎn)A、B,若△ABF2是以∠ABF2為頂點(diǎn)的等腰直角三角形,則雙曲線的離心率的平方為( 。
A.5+2$\sqrt{2}$B.4+2$\sqrt{2}$C.$\sqrt{7}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.直線l:$\frac{x}{m}$+$\frac{y}{n}$=1過點(diǎn)A(1,2),則直線l與x、y正半軸圍成的三角形的面積的最小值為( 。
A.2$\sqrt{2}$B.3C.$\frac{5\sqrt{2}}{2}$D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,輸出S的值為(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)m、n是兩條不同的直線,α、β、γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m∥n,n?α,則m∥α 
②若m⊥α,m∥β,則α⊥β
③α∥β,α∥γ,則β∥γ      
④若α⊥β,m∥α,則m⊥β
其中正確命題的序號(hào)是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若直線l:y=$\sqrt{3}$x與圓C:x2-4x+y2=0相交于A,B兩點(diǎn),則弦長|AB|=( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.函數(shù)f(x)=2sin(ωx-$\frac{π}{6}$)-1最小正周期是π,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.廣安市2015年每個(gè)月平均氣溫(攝氏度)數(shù)據(jù)莖葉圖如圖,則這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是( 。
A.20;23B.21.5;20,23C.20;20,23D.21.5;23

查看答案和解析>>

科目: 來源: 題型:解答題

12.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左頂點(diǎn)到直線x+2y-2=0的距離為$\frac{{4\sqrt{5}}}{5}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,試探究:點(diǎn)O到直線AB的距離是否為定值?若是,求出這個(gè)定值;否則,請(qǐng)說明理由;
(Ⅲ)在(2)的條件下,試求△AOB面積S的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ABC=45°,PA⊥底面ABCD,AB=AC=PA=2,E、F分別為BC、AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)設(shè)$\frac{PM}{PD}=λ$,若直線ME與平面PBC所成的角θ的正弦值為$\frac{{\sqrt{15}}}{15}$,求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知點(diǎn)P在拋物線x2=y上運(yùn)動(dòng),過點(diǎn)P作y軸的垂線段PD,垂足為D.動(dòng)點(diǎn)M(x,y)滿足$\overrightarrow{DM}=2\overrightarrow{DP}$,設(shè)點(diǎn)M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l:y=-1,若經(jīng)過點(diǎn)F(0,1)的直線與曲線C相交于A、B兩點(diǎn),過點(diǎn)A、B分別作直線l的垂線,垂足分別為A1、B1,試判斷直線A1F與B1F的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案