相關(guān)習(xí)題
 0  236598  236606  236612  236616  236622  236624  236628  236634  236636  236642  236648  236652  236654  236658  236664  236666  236672  236676  236678  236682  236684  236688  236690  236692  236693  236694  236696  236697  236698  236700  236702  236706  236708  236712  236714  236718  236724  236726  236732  236736  236738  236742  236748  236754  236756  236762  236766  236768  236774  236778  236784  236792  266669 

科目: 來源: 題型:選擇題

12.若雙曲線的頂點(diǎn)為橢圓2x2+y2=2長(zhǎng)軸的端點(diǎn),且雙曲線的離心率與該橢圓的離心率的積為1,則雙曲線的方程是( 。
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)a+b<0,且b>0,則下列不等式正確的是( 。
A.b2>-abB.a2<-abC.a2<b2D.a2>b2

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)t∈R,已知p:函數(shù)f(x)=x2-tx+1有零點(diǎn),q:?x∈R,|x-1|≥2-t2
(Ⅰ)若q為真命題,求t的取值范圍;
(Ⅱ)若p∨q為假命題,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=ax+$\frac{2a-1}{x}$+1-3a(a>0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)y=f(x)在點(diǎn)(2,f(2))處的切線方程(寫成一般式).
(Ⅱ)若不等式f(x)≥(1-a)lnx在x∈[1,+∞)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.圓C1:x2+y2+2x+8y-8=0和圓C2:x2+y2-4x-5=0的位置關(guān)系為相交.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosA+$\sqrt{3}$a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=6,求△ABC的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知函數(shù)$f(x)=cos2xcosθ-sin2xcos({\frac{π}{2}-θ})({|θ|<\frac{π}{2}})$在$({-\frac{3π}{8},-\frac{π}{6}})$上單調(diào)遞增,則$f({\frac{π}{16}})$的最大值為1.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,則該三棱錐外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,且與直線x+y-1=0相交于A,B兩點(diǎn).
(1)若橢圓C1的兩焦點(diǎn)分別為雙曲線${C_2}:{x^2}-\frac{y^2}{2}=1$的頂點(diǎn),且以橢圓上任一點(diǎn)P和左右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的△PF1F2的周長(zhǎng)為$2\sqrt{3}+2$,求橢圓C1的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,求弦AB的長(zhǎng);
(3)當(dāng)橢圓的離心率e滿足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,且以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在如圖所示的幾何體中,AF⊥平面ABCD,EF∥AB,四邊形ABCD為矩形,AD=2,AB=AF=2EF=1,P是棱DF的中點(diǎn).
(1)求證:BF∥平面ACP;
(2)求異面直線CE與AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案