相關(guān)習(xí)題
 0  236940  236948  236954  236958  236964  236966  236970  236976  236978  236984  236990  236994  236996  237000  237006  237008  237014  237018  237020  237024  237026  237030  237032  237034  237035  237036  237038  237039  237040  237042  237044  237048  237050  237054  237056  237060  237066  237068  237074  237078  237080  237084  237090  237096  237098  237104  237108  237110  237116  237120  237126  237134  266669 

科目: 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求證:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A.$\frac{21}{22}$B.$\frac{20}{21}$C.$\frac{19}{20}$D.$\frac{22}{23}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx(m為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)$m≥\frac{{3\sqrt{2}}}{2}$時(shí),設(shè)g(x)=2f(x)+x2的兩個(gè)極值點(diǎn)x1,x2,(x1<x2)恰為h(x)=lnx-cx2-bx的零點(diǎn),求$y=({x_1}-{x_2}){h^'}(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)$A(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為2的直線l,使得當(dāng)直線l與橢圓C有兩個(gè)不同交點(diǎn)M,N時(shí),能在直線$y=\frac{5}{3}$上找到一點(diǎn)P,在橢圓C上找到一點(diǎn)Q,滿足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對(duì)某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在[0,10]時(shí)為一等品,在[10,20]為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;
(2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來(lái)的盈利為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.f(x)是定義在R上函數(shù),滿足f(x)=f(-x)且x≥0時(shí),f(x)=x3,若對(duì)任意的x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,則實(shí)數(shù)t的取值范圍是t≤-3或t≥1或t=0.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.從混有4張假鈔的20張百元鈔票中任意抽取兩張,將其中一張放到驗(yàn)鈔機(jī)上檢驗(yàn)發(fā)現(xiàn)是假鈔,則兩張都是假鈔的概率是$\frac{3}{35}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.若關(guān)于x的不等式xex-ax+a<0的解集為(m,n)(n<0),且(m,n)中只有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{e})$B.$[\frac{2}{{3{e^2}}},\frac{1}{e})$C.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知球的半徑為4,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓,若兩圓的公共弦長(zhǎng)為4,則兩圓的圓心距等于( 。
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.已知直線l:$\sqrt{3}x-y+4=0$與圓x2+y2=16交于A,B兩點(diǎn),則$\overrightarrow{AB}$在x軸正方向上投影的絕對(duì)值為( 。
A.$4\sqrt{3}$B.4C.$2\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案