相關(guān)習(xí)題
 0  237032  237040  237046  237050  237056  237058  237062  237068  237070  237076  237082  237086  237088  237092  237098  237100  237106  237110  237112  237116  237118  237122  237124  237126  237127  237128  237130  237131  237132  237134  237136  237140  237142  237146  237148  237152  237158  237160  237166  237170  237172  237176  237182  237188  237190  237196  237200  237202  237208  237212  237218  237226  266669 

科目: 來源: 題型:選擇題

6.關(guān)于x的方程$x={log_a}(-{x^2}+2x+a)$(a>0,且a≠1)解的個數(shù)是( 。
A.2B.1C.0D.不確定的

查看答案和解析>>

科目: 來源: 題型:選擇題

5.將函數(shù)$f(x)=sin(\frac{π}{2}-x)$的圖象上所有點向左平行移動$\frac{π}{6}$個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸的方程是( 。
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{2π}{3}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知雙曲線C經(jīng)過點(2,3),它的漸近線方程為y=±$\sqrt{3}$x,橢圓C1與雙曲線C有相同的焦點,橢圓C1的短軸長與雙曲線C的實軸長相等.
(1)求雙曲線C和橢圓C1的方程;
(2)經(jīng)過橢圓C1左焦點F的直線l與橢圓C1交于A、B兩點,是否存在定點D,使得無論AB怎樣運動,都有∠ADF=∠BDF;若存在,求出D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.一棟高樓上安放了一塊高約10米的LED廣告屏,一測量愛好者在與高樓底部同一水平線上的C處測得廣告屏頂端A處的仰角為31.80°.再向大樓前進20米到D處,測得廣告屏頂端A處的仰角為37.38°(人的高度忽略不計).
(1)求大樓的高度(從地面到廣告屏頂端)(精確到1米);
(2)若大樓的前方是一片公園空地,空地上可以安放一些長椅,為使坐在其中一個長椅上觀看廣告屏最清晰(長椅的高度忽略不計),長椅需安置在距大樓底部E處多遠?已知視角∠AMB(M為觀測者的位置,B為廣告屏底部)越大,觀看得越清晰.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若點P是△ABC的外心,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+λ$\overrightarrow{PC}$=$\overrightarrow{0}$,∠C=120°,則實數(shù)λ的值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目: 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

若數(shù)列滿足,則稱數(shù)列為“差遞減”數(shù)列.若數(shù)列是“差遞減”數(shù)列,且其通項與其前項和)滿足),則實數(shù)的取值范圍是

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知m>0,n>0,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是[2+2$\sqrt{2}$,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

20.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜邊BC上一點,且BD=2DC,則$\overrightarrow{AD}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=3.

查看答案和解析>>

科目: 來源: 題型:填空題

19.關(guān)于x,y的二元一次方程的增廣矩陣為$(\begin{array}{l}{3}&{2}&{1}\\{1}&{1}&{m}\end{array})$.若Dx=5,則實數(shù)m=-2.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知平面直角坐標系xOy中,過點P(-1,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ•sinθ•tanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案