相關(guān)習(xí)題
 0  237741  237749  237755  237759  237765  237767  237771  237777  237779  237785  237791  237795  237797  237801  237807  237809  237815  237819  237821  237825  237827  237831  237833  237835  237836  237837  237839  237840  237841  237843  237845  237849  237851  237855  237857  237861  237867  237869  237875  237879  237881  237885  237891  237897  237899  237905  237909  237911  237917  237921  237927  237935  266669 

科目: 來源: 題型:解答題

10.已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于點(diǎn)M,N兩點(diǎn).
(1)求k的取值范圍;
(2)請問是否存在實(shí)數(shù)k使得$\overrightarrow{OM}•\overrightarrow{ON}=12$(其中O為坐標(biāo)原點(diǎn)),如果存在請求出k的值,并求|MN|;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,直線l的極坐標(biāo)方程為2ρcosθ+ρsinθ-2=0.
(1)寫出C的參數(shù)方程和直線l的直角坐標(biāo)方程.
(2)設(shè)直線l與曲線C的交點(diǎn)為P1,P2,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.函數(shù)y=sinx-2x的導(dǎo)數(shù)是( 。
A.cosx-2xB.cosx-2x•ln2C.-cosx+2xD.-cosx-2x•ln2

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知點(diǎn)C(t,$\frac{t}{2}$)(t∈R,t≠0)為圓心,且過原點(diǎn)O的圓與x軸交與點(diǎn)A,與y軸交與點(diǎn)B.
(Ⅰ)求證:△AOB的面積為定值;
(Ⅱ)設(shè)直線y=-2x+4與圓C交與點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

6.如果執(zhí)行如圖的程序框圖,那么輸出的i=8

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,在四面體P-ABC中,PA=PB=PC=4,點(diǎn)O是點(diǎn)P在平面ABC上的投影,且tan∠APO=$\frac{\sqrt{2}}{2}$,則四面體P-ABC的外接球的體積為(  )
A.8$\sqrt{6}$πB.24πC.32$\sqrt{3}$πD.48π

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則函數(shù)y=f[f(x)]-1的零點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=4和點(diǎn)P(-1,0),過點(diǎn)P的直線l交圓O于A、B兩點(diǎn)
(1)若|AB|=2$\sqrt{3}$,求直線l的方程;
(2)設(shè)弦AB的中點(diǎn)為M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

2.請先閱讀:在等式cos2x=2cos2x-1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x-1)′,由求導(dǎo)法則,得(-sin2x)2=4cosx(-sinx),化簡得等式:sin2x=2cosxsinx.
(1)利用上題的想法(或其他方法),試由等式(1+x)n=Cn0+Cn1x+Cn2x2+-----+Cnnxn(x∈R,正整數(shù)n≥2),證明:n[(1+x)n-1-1]=$\sum_{k=1}^n{kC_n^k{x^{k-1}}}$.
(2)對于正整數(shù)n≥3,求證:
(i)$\sum_{k=1}^n{{{(-1)}^k}kC_n^k}$=0;
(ii)$\sum_{k=1}^n{{{(-1)}^k}{k^2}C_n^k}$=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=4,點(diǎn)E是BB1的中點(diǎn),則D1A與平面AEC所成角的余弦值為(  )
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{\sqrt{13}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案