相關(guān)習(xí)題
 0  238238  238246  238252  238256  238262  238264  238268  238274  238276  238282  238288  238292  238294  238298  238304  238306  238312  238316  238318  238322  238324  238328  238330  238332  238333  238334  238336  238337  238338  238340  238342  238346  238348  238352  238354  238358  238364  238366  238372  238376  238378  238382  238388  238394  238396  238402  238406  238408  238414  238418  238424  238432  266669 

科目: 來(lái)源: 題型:選擇題

9.與角-$\frac{π}{6}$終邊相同的角是(  )
A.$\frac{5}{6}π$B.$\frac{1}{3}π$C.$\frac{11}{6}π$D.$\frac{2}{3}π$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.己知將函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$的圖象向左平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度后得到y(tǒng)=g(x)的圖象,則g(x)在[-$\frac{π}{12}$,$\frac{π}{3}$]上的值域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{1}{2}$,1]B.[-1,$\frac{1}{2}$]C.[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]D.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,a1=2,an+1=2-$\frac{1}{{a}_{n}}$,數(shù)列{bn}中,bn=$\frac{1}{{a}_{n}-1}$,其中n∈N*
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)設(shè)Sn是數(shù)列{$\frac{1}{3}$bn}的前n項(xiàng)和,求$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2,且直線l與曲線C交于A,B兩點(diǎn).
(1)若m=2,求直線l與曲線C兩交點(diǎn)的極坐標(biāo);
(2)若$|AB|≤2\sqrt{3}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.某縣城高中為了走讀學(xué)生的上下學(xué)交通安全,從學(xué)生的身心健康角度出發(fā),決定禁止學(xué)生騎電瓶車到校,改騎自行車或坐公交車.在禁騎之前,對(duì)騎電瓶車的學(xué)生家長(zhǎng)通過(guò)致函、家長(zhǎng)會(huì)等方式進(jìn)行了問(wèn)卷調(diào)查.從家長(zhǎng)的支持禁騎或不支持禁騎、家長(zhǎng)的學(xué)歷(以父、母中較高的學(xué)歷為準(zhǔn))等數(shù)據(jù)中隨機(jī)地抽取了100份進(jìn)行統(tǒng)計(jì)如表,學(xué)歷分為高中以上(含高中畢業(yè))和高中以下(不含高中畢業(yè)).
 高中以下高中以上合計(jì)
支持226890
不支持8210
合計(jì)3070100
(1)判斷能否有99.9%的把握認(rèn)為“不支持禁騎”與“學(xué)歷”有關(guān).
(2)從抽取出來(lái)的不支持學(xué)校禁騎決定的學(xué)生家長(zhǎng)(每位學(xué)生只派一位家長(zhǎng)參與)中任取三位,取到的家長(zhǎng)學(xué)歷為“高中以上”的人數(shù)記為隨機(jī)變量X,求X的分布列及期望EX.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≤k)0.0100.0050.001
k6.6357.87910.828

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知過(guò)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F作傾斜角120°的直線l交橢圓為A,B,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知sinα是方程5x2-7x-6=0的根.求$\frac{{sin({-α-\frac{3}{2}π})•sin({\frac{3}{2}π-α})•{{tan}^2}(2π-α)}}{{cos({\frac{π}{2}-α})•cos({\frac{π}{2}+α})•cot(π-α)}}$的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.與-265°終邊相同的角為( 。
A.95°B.-95°C.85°D.-85°

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知$sinα=\frac{{\sqrt{5}}}{5},sin({α-β})=-\frac{{\sqrt{10}}}{10},α,β$均為銳角,則cosβ=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.在△ABC中,若b=2,A=120°,三角形的面積$S=2\sqrt{3}$,則a=2$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案