相關習題
 0  238295  238303  238309  238313  238319  238321  238325  238331  238333  238339  238345  238349  238351  238355  238361  238363  238369  238373  238375  238379  238381  238385  238387  238389  238390  238391  238393  238394  238395  238397  238399  238403  238405  238409  238411  238415  238421  238423  238429  238433  238435  238439  238445  238451  238453  238459  238463  238465  238471  238475  238481  238489  266669 

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-x+alnx,a∈R.
(Ⅰ)若函數(shù)f(x)為定義域上的單調函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當0<α<$\frac{2}{9}$時,函數(shù)f(x)的兩個極值點為x1,x2,且x1<x2.證明:$\frac{f({x}_{1})}{{x}_{2}}$>-$\frac{5}{12}$-$\frac{1}{3}$ln3.

查看答案和解析>>

科目: 來源: 題型:解答題

4.某港口有一個泊位,現(xiàn)統(tǒng)計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果停靠時間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,依此類推,統(tǒng)計結果如表:
停靠時間 2.5 3.5 4 4.5 5 5.5 6
 輪船數(shù)量 12 12 17 20 15 13 83
(Ⅰ)設該月100艘輪船在該泊位的平均?繒r間為a小時,求a的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?縜小時,且在一晝夜的時間段中隨機到達,求這兩艘輪船中至少有一艘在停靠該泊位時必須等待的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在四棱錐S-ABCD中,底面ABCD為平行四邊形,∠DBA=60°,∠SAD=30°,AD=SD=2$\sqrt{3}$,BA=BS=4.
(Ⅰ)證明:BD⊥平面SAD;
(Ⅱ)求二面角A-SB-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

2.f(x)=$\frac{1}{3}{x^3}$-$\frac{1}{2}$(a-3)x2-a(2a-3)x+b在(-1,1)上不單調,則實數(shù)a的取值范圍是(-1,1)∪(1,2).

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,扇形ABC是一塊半徑為2千米,圓心角為60°的風景區(qū),P點在弧BC上,現(xiàn)欲在風景區(qū)中規(guī)劃三條商業(yè)街道,要求街道PQ與AB垂直,街道PR與AC垂直,線段RQ表示第三條街道.
(1)如果P位于弧BC的中點,求三條街道的總長度;
(2)由于環(huán)境的原因,三條街道PQ、PR、RQ每年能產生的經濟效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產生的經濟總效益最高為多少?(精確到1萬元)

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,則sin($\frac{α}{2}$+β)的值為(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若點$({sin\frac{5π}{6},cos\frac{5π}{6}})$在角α的終邊上,則sinα+cosα的值為( 。
A.$-\frac{{\sqrt{3}}}{2}-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}+\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}+\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知p:{x|x2-8x-20≤0},q:{x|$\frac{{x-({m+1})}}{{x+({m-1})}}$≤0,m>0},若¬p是¬q的必要而不充分條件,則實數(shù)m的取值范圍是[9,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2elnx.(e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調區(qū)間;
(2)求函數(shù)f(x)的圖象在(1,f(1))處的切線方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若方程kx-lnx=0有兩個實數(shù)根,則k的取值范圍是( 。
A.(1,ln2)B.$({\frac{1}{e},e})$C.$({0,\frac{1}{e}})$D.(0,e)

查看答案和解析>>

同步練習冊答案