相關(guān)習(xí)題
 0  238374  238382  238388  238392  238398  238400  238404  238410  238412  238418  238424  238428  238430  238434  238440  238442  238448  238452  238454  238458  238460  238464  238466  238468  238469  238470  238472  238473  238474  238476  238478  238482  238484  238488  238490  238494  238500  238502  238508  238512  238514  238518  238524  238530  238532  238538  238542  238544  238550  238554  238560  238568  266669 

科目: 來源: 題型:填空題

18.若向量$λ\overrightarrow{e_1}-\overrightarrow{e_2}$與$\overrightarrow{e_1}-λ\overrightarrow{e_2}$共線,其中$\overrightarrow{e_1},\overrightarrow{e_2}$為不共線的單位單位向量,則實(shí)數(shù)λ的值等于±1.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.在直角坐標(biāo)系中,點(diǎn)P坐標(biāo)是(-3,3),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)是( 。
A.$({3\sqrt{2},\frac{3π}{4}})$B.$({3\sqrt{2},\frac{5π}{4}})$C.$({3,\frac{5π}{4}})$D.$({3,\frac{3π}{4}})$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)f(x)=(x-2)2ex+ae-x,g(x)=2a|x-2|(e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x方程f(x)=g(x)有且僅有6個(gè)不等的實(shí)數(shù)解.則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{{e}^{2}}{2e-1}$,+∞)B.(e,+∞)C.(1,e)D.(1,$\frac{{e}^{2}}{2e-1}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=x2-mx-m2,則f(x)( 。
A.有一個(gè)零點(diǎn)B.有兩個(gè)零點(diǎn)
C.有一個(gè)或兩個(gè)零點(diǎn)D.無零點(diǎn)

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知數(shù)列{an}滿足:a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),則an=5n2+n-2.

查看答案和解析>>

科目: 來源: 題型:解答題

13.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=2x+m,若對(duì)任意的x∈[-1,1],f(x)>g(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.在6件產(chǎn)品中有2件次品,連續(xù)抽3次,每次抽1件,求:
(1)不放回抽樣時(shí),抽到次品數(shù)ξ的分布列;
(2)放回抽樣時(shí),抽到次品數(shù)η的分布列.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知B(m,2b)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=l(a>0,b>0)的右支上一點(diǎn),A為右頂點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOB=60°,則該雙曲線的漸近線方程為( 。
A.y=±$\frac{{\sqrt{10}}}{2}x$B.y=±$\frac{{\sqrt{13}}}{2}x$C.y=±$\frac{{\sqrt{15}}}{2}x$D.y=±$\frac{{\sqrt{19}}}{2}x$

查看答案和解析>>

科目: 來源: 題型:填空題

10.關(guān)于x的不等式$\frac{1}{2}$<sinx≤$\frac{\sqrt{3}}{2}$,x∈[0,2π]的解集為($\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$).

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x+2}\\{\frac{x}{4}+\frac{y}{4}≤1}\\{y≥2-\frac{x}{2}}\end{array}\right.$,則z=($\frac{1}{2}$)2x-y的最小值為$\frac{1}{256}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案