相關(guān)習(xí)題
 0  238449  238457  238463  238467  238473  238475  238479  238485  238487  238493  238499  238503  238505  238509  238515  238517  238523  238527  238529  238533  238535  238539  238541  238543  238544  238545  238547  238548  238549  238551  238553  238557  238559  238563  238565  238569  238575  238577  238583  238587  238589  238593  238599  238605  238607  238613  238617  238619  238625  238629  238635  238643  266669 

科目: 來源: 題型:解答題

3.如圖,四邊形ABCD是邊長為1的正方形,ED⊥平面ABCD,F(xiàn)B⊥平面ABCD,且ED=FB=1,M為BC的中點,N為AF的中點.
(Ⅰ)求證:AF⊥EC;
(Ⅱ)求證:MN⊥平面AEF;
(Ⅲ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.某商場搞促銷,規(guī)定顧客購物達(dá)到一定金額可抽獎,最多有三次機會,每次抽中,可依次分別獲得20元、30元、50元獎金,顧客每次抽中后,可以選擇帶走所得獎金,結(jié)束抽獎;也可以選擇繼續(xù)抽獎,若有任何一次沒有抽中,則連同前面所得獎金也全部歸零,結(jié)束抽獎,設(shè)顧客甲第一次、第二次、第三次抽中的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選擇繼續(xù)抽獎的概率均為$\frac{1}{2}$,且每次是否抽中互不影響.
(Ⅰ)求顧客甲第一次抽中,但所得獎金為零的概率;
(Ⅱ)設(shè)該顧客所得獎金總數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinωx-4sin2$\frac{ωx}{2}$+2+m(其中ω>0,m∈R),且當(dāng)x=$\frac{1}{2}$時,f(x)的圖象在y軸右側(cè)得到第一個最高點.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若f(x)在區(qū)間[2,4]上的最大值為5,最小值是p,求m和p的值.

查看答案和解析>>

科目: 來源: 題型:填空題

20.($\sqrt{x}$-$\frac{1}{2x}$)9展開式中的常數(shù)項是-$\frac{21}{2}$.(用數(shù)字作答)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點為F(3,0),過F點的直線l與雙曲線E交于A,B兩點,且AB的中點為P(-3,-6),則E的方程為( 。
A.$\frac{{x}^{2}}{5}$$-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

18.對于實數(shù)a>0,“$\frac{1}{x}$<a”是“x>$\frac{1}{a}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)變量x,y滿足越是條件$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最小值為( 。
A.6B.10C.12D.18

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知集合A={x|x≤4},B={x|x2>4},則A∩B=( 。
A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|x<-2或2<x≤4}D.{x|x<-2或2<x<4}

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{x^2}$.設(shè)l為曲線y=f(x)在點P(x0,f(x0))處的切線,其中x0∈[-1,1].
(Ⅰ)求直線l的方程(用x0表示);
(Ⅱ)設(shè)O為原點,直線x=1分別與直線l和x軸交于A,B兩點,求△AOB的面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+2|+|x-m|.
(1)當(dāng)m=6時,解不等式f(x)≥12;
(2)已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}$=$\sqrt{ab}$,若對于?a,b∈R*,?x0使f(x0)≤ab成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案