相關(guān)習(xí)題
 0  238546  238554  238560  238564  238570  238572  238576  238582  238584  238590  238596  238600  238602  238606  238612  238614  238620  238624  238626  238630  238632  238636  238638  238640  238641  238642  238644  238645  238646  238648  238650  238654  238656  238660  238662  238666  238672  238674  238680  238684  238686  238690  238696  238702  238704  238710  238714  238716  238722  238726  238732  238740  266669 

科目: 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{lnx+1}{x}$,g(x)=x2-(a+1)x
(1)①求函數(shù)f(x)的最大值;
②證明:$\frac{ln2}{2^2}+\frac{ln3}{3^2}+…+\frac{lnn}{n^2}<\frac{{2{n^2}-n-1}}{{4({n+1})}}({n∈{N_+},n≥2})$.
(2)當(dāng)a≥0時(shí),討論函數(shù)h(x)=$\frac{1}{2}{x^2}$+a-axf(x)與函數(shù)g(x)的圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),上頂點(diǎn)為A,過(guò)A與AF2垂直的直線交x軸負(fù)半軸于Q點(diǎn),且F1為QF2的中點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)F2的直線l與C交于不同的兩點(diǎn)M、N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.射洪縣教育局從去年參加了計(jì)算機(jī)職稱(chēng)考試,并且年齡在[25,55]歲的教師中隨機(jī)抽取n人的成績(jī)進(jìn)行了調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組低碳族的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)30q
第六組[50,55)150.3
(1)補(bǔ)全頻率分布直方圖,并求a、p、q的值;
(2)若用以上數(shù)據(jù)來(lái)估計(jì)今年參考老師的過(guò)關(guān)情況,并將每組的頻率視作對(duì)應(yīng)年齡階段老師的過(guò)關(guān)概率,考試是否過(guò)關(guān)互不影響.現(xiàn)有三名教師參加該次考試,年齡分別為41歲、47歲、53歲.記ξ為過(guò)關(guān)的人數(shù),請(qǐng)利用相關(guān)數(shù)據(jù)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和Sn滿足an=1-2Sn
(1)求證:數(shù)列{an}為等比數(shù)列;
(2)設(shè)函數(shù)$f(x)={log_{\frac{1}{3}}}x,{b_n}=f({a_1})+f({a_2})+…+f({a_n})$,求Tn=$\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.設(shè)[x]表示不小于實(shí)數(shù)x的最小整數(shù),如[2.6]=3,[-3.5]=-3.已知函數(shù)f(x)=[x]2-2[x],若函數(shù)F(x)=f(x)-k(x-2)+2在(-1,4]上有2個(gè)零點(diǎn),則k的取值范圍是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知一組數(shù)據(jù)(2,3),(4,6),(6,9),(x0,y0)的線性回歸方程為$\stackrel{∧}{y}$=x+2,則x0-y0的值為(  )
A.2B.4C.-4D.-2

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x3+$\frac{1}{x+1}$,x∈[0,1].
(1)用分析法證明:f(x)≥1-x+x2;
(2)證明:f(x)≤$\frac{3}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)求S1,S2,S3,S4并猜想Sn的表達(dá)式(不必寫(xiě)出證明過(guò)程);
(2)設(shè)bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知數(shù)列{bn}滿足bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,其中a1=2,an+1=$\frac{2}{{a}_{n}+1}$
(1)求b1,b2,b3,并猜想bn的表達(dá)式(不必寫(xiě)出證明過(guò)程);
(2)設(shè)cn=$\frac{1}{lo{g}_{2}_{n}•lo{g}_{2}_{n+1}}$,數(shù)列|cn|的前項(xiàng)和為Sn,求證Sn<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案