相關(guān)習(xí)題
 0  239192  239200  239206  239210  239216  239218  239222  239228  239230  239236  239242  239246  239248  239252  239258  239260  239266  239270  239272  239276  239278  239282  239284  239286  239287  239288  239290  239291  239292  239294  239296  239300  239302  239306  239308  239312  239318  239320  239326  239330  239332  239336  239342  239348  239350  239356  239360  239362  239368  239372  239378  239386  266669 

科目: 來源: 題型:選擇題

19.已知i是虛數(shù)單位,則滿足z-i=|1+2i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若集合A={x|1≤x≤2},B={x|x2-3x+2=0},則A∩B等于( 。
A.{x|1≤x≤2}B.(1,2)C.{1,2}D.

查看答案和解析>>

科目: 來源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=5-t}\\{y=t-1}\end{array}\right.$(t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=3,則直線l被圓C所截得弦的長(zhǎng)度為2.

查看答案和解析>>

科目: 來源: 題型:填空題

16.某四棱錐和球的組合體的三視圖如圖所示,則該組合體的體積是$\frac{8+4π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.定義在R上的奇函數(shù)f(x)在(-∞,0)上遞增,f(2)=1,則滿足|f(log${\;}_{\frac{1}{2}}$x)|>1的x的取值范圍是(  )
A.($\frac{1}{4}$,4)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{4}$)∪(4,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.一個(gè)由底面是正三角形的三棱柱和三棱錐組成的組合體,其三視圖如圖所示,則該組合體的體積為( 。
A.$\frac{11\sqrt{3}}{3}$B.$\frac{15\sqrt{3}}{4}$C.$\frac{11\sqrt{3}}{4}$D.5$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知定直線l:y=x+3,定點(diǎn)A(2,1),以坐標(biāo)軸為對(duì)稱軸的橢圓C過點(diǎn)A且與l相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)橢圓的弦AP,AQ的中點(diǎn)分別為M,N,若MN平行于l,則OM,ON斜率之和是否為定值?若是定值,請(qǐng)求出該定值;若不是定值請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長(zhǎng)為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評(píng)分的平均值的大小及方差的大。ú灰笥(jì)算出具體值,給出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
  A B 合計(jì)
 認(rèn)可   
 不認(rèn)可   
 合計(jì)   
(Ⅲ)若從此樣本中的A城市和B城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自B城市的概率是多少?
附:參考數(shù)據(jù):
(參考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)$f(x)=2sin(2x+φ)(|φ|<\frac{π}{2})$部分圖象如圖所示.
(Ⅰ)求φ值及圖中x0的值;
(Ⅱ)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知$c=\sqrt{7}$,f(C)=-2,sinB=2sinA,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案