相關(guān)習(xí)題
 0  239508  239516  239522  239526  239532  239534  239538  239544  239546  239552  239558  239562  239564  239568  239574  239576  239582  239586  239588  239592  239594  239598  239600  239602  239603  239604  239606  239607  239608  239610  239612  239616  239618  239622  239624  239628  239634  239636  239642  239646  239648  239652  239658  239664  239666  239672  239676  239678  239684  239688  239694  239702  266669 

科目: 來源: 題型:解答題

6.(Ⅰ)已知$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{5}{7}$,求sinα•cosα的值;
(Ⅱ)求$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.某少數(shù)民族的刺繡有著悠久的歷史,圖中(1)、(2)、(3)、(4)為她們刺銹最簡單的四個圖案,這些圖案都是由小正方向構(gòu)成,小正方形數(shù)越多刺銹越漂亮,向按同樣的規(guī)律刺銹(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形

(1)求f(6)的值
(2)求出f(n)的表達(dá)式
(3)求證:當(dāng)n≥2時,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是(  )
A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目: 來源: 題型:填空題

3.棱長均相等的四面體ABCD的外接球半徑為1,則該四面體ABCD的棱長為$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.正△ABC的三個頂點(diǎn)都在球O的球面上,AB=AC=2,若三棱錐O-ABC的體積為2,則該球的表面積為$\frac{160π}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x)=a(x+1)(x-a),(a<0)且f(x)在x=a處取到極大值,那么a的取值范圍是(-1,0).

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知函數(shù)f(x)=loga(3x2-2ax)在區(qū)間[$\frac{1}{2}$,1]上是減函數(shù),則實數(shù)a的取值范圍(0,$\frac{3}{4}$).

查看答案和解析>>

科目: 來源: 題型:解答題

19.求經(jīng)過點(diǎn)$C({6,\frac{π}{6}})$,且平行于極軸的直線的極坐標(biāo)方程.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2-bx+lnx,(a,b∈R).
(1)若a=1,b=3,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若b=0時,不等式f(x)≤0在[1,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=1,b>$\frac{9}{2}$時,記函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的兩個零點(diǎn)是x1,x2(x1<x2),求證:f(x1)-f(x2)>$\frac{63}{16}$-3ln2.

查看答案和解析>>

科目: 來源: 題型:填空題

17.函數(shù)y=f(x)在其定義域$[{-\frac{3}{2},3}]$內(nèi)可導(dǎo),其圖象如圖所示,記y=f(x)的導(dǎo)函數(shù)為y=f'(x),則不等式f′(x)≤0的解集是[-$\frac{1}{3}$,1]∪[2,3).

查看答案和解析>>

同步練習(xí)冊答案