相關(guān)習(xí)題
 0  239584  239592  239598  239602  239608  239610  239614  239620  239622  239628  239634  239638  239640  239644  239650  239652  239658  239662  239664  239668  239670  239674  239676  239678  239679  239680  239682  239683  239684  239686  239688  239692  239694  239698  239700  239704  239710  239712  239718  239722  239724  239728  239734  239740  239742  239748  239752  239754  239760  239764  239770  239778  266669 

科目: 來(lái)源: 題型:選擇題

17.若復(fù)數(shù)z滿(mǎn)足z=1-2i,其中i為虛數(shù)單位,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知m,n,l是三條不同的直線,α,β是兩個(gè)不同的平面,下列命題正確的是( 。
A.若m∥α,n⊥β,m⊥n,則α⊥βB.若m?α,n?α,n⊥l,則l⊥α
C.若m∥α,n⊥β,α⊥β,則m∥nD.若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.社區(qū)主任要為小紅等4名志愿者和他們幫助的2位老人拍照,要求排成一排,小紅必須與兩位老人都相鄰,且兩位老人不能排在兩端,則不同的排法種數(shù)為( 。
A.24B.20C.16D.12

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.某射擊手射擊一次命中的概率為0.8,連續(xù)兩次均射中的概率是0.5,已知某次射中,則隨后一次射中的概率是( 。
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,記$f(x)=\overrightarrow m•\overrightarrow n$.
(1)若f(x)=1,求$cos({x+\frac{π}{3}})$的值;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿(mǎn)足(2a-c)cosB=bcosC,求f(2A)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.拋物線y2=2px(p>0)的準(zhǔn)線與圓x2+y2+2x=0相切,則p=4.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.設(shè)p:0<x<2,q:2x>1,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x^2}{{1+{x^2}}}$.
(Ⅰ)分別求$f(2)+f(\frac{1}{2})$,$f(3)+f(\frac{1}{3})$,$f(4)+f(\frac{1}{4})$的值;
(Ⅱ)歸納猜想一般性結(jié)論,并給出證明;
(Ⅲ)求值:$f(1)+f(2)+…+f(2011)+f(\frac{1}{2011})+f(\frac{1}{2010})+…+f(\frac{1}{2})+f(1)$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若存在$x∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.在三棱錐P-ABC中,△PAC和△PBC是邊長(zhǎng)為$\sqrt{2}$的等邊三角形,AB=2,O是AB中點(diǎn),E是BC中點(diǎn).
(Ⅰ)求證:平面PAB⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值的大。
(Ⅲ)在棱PB上是否存在一點(diǎn)F,使得B-OF-E的余弦值為$\frac{{\sqrt{6}}}{6}$?若存在,指出點(diǎn)F在PB上的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案