相關(guān)習(xí)題
 0  239780  239788  239794  239798  239804  239806  239810  239816  239818  239824  239830  239834  239836  239840  239846  239848  239854  239858  239860  239864  239866  239870  239872  239874  239875  239876  239878  239879  239880  239882  239884  239888  239890  239894  239896  239900  239906  239908  239914  239918  239920  239924  239930  239936  239938  239944  239948  239950  239956  239960  239966  239974  266669 

科目: 來源: 題型:選擇題

18.已知全集U,集合M,N滿足M⊆N⊆U,則下列結(jié)論正確的是( 。
A.M∪N=UB.(∁UM)∪(∁UN)=UC.M∩(∁UN)=∅D.(∁UM)∪(∁UN)=∅

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知函數(shù)$g(x)={e^{1+{x^2}}}-\frac{1}{{1+{x^2}}}+|x|$,則使得g(x-1)>g(3x+1)成立的x的取值范圍是(-1,0).

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知角α的終邊過點(diǎn)P(-4m,3m),(m<0),則2sinα+cosα的值是$-\frac{2}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù),α為直線的傾斜角).以平面直角坐標(biāo)系xOy極點(diǎn),x的正半軸為極軸,取相同的長度單位,建立極坐標(biāo)系.圓的極坐標(biāo)方程為ρ=2cosθ,設(shè)直線與圓交于A,B兩點(diǎn).
(Ⅰ)求圓C的直角坐標(biāo)方程與α的取值范圍;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(-1,0),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若圓x2+y2-12x+16=0與直線y=kx交于不同的兩點(diǎn),則實(shí)數(shù)k的取值范圍為(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-$\sqrt{5}$,$\sqrt{5}$)C.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目: 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,點(diǎn)P(0,$\sqrt{3}$),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$.直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知正整數(shù)λ,μ為常數(shù),且λ≠1,無窮數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,且Sn=λan-μ.n∈N*.記數(shù)列{an}中任意不同兩項(xiàng)的和構(gòu)成的集合為A.
(1)求證:數(shù)列{an}為等比數(shù)列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)已知m≥1,求集合{x|3μ•2n-1<x<3μ•2n,x∈A}的元素個(gè)數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點(diǎn)O,EF∥AB,EF=$\frac{1}{2}$AB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點(diǎn),求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.

查看答案和解析>>

科目: 來源: 題型:填空題

10.在等差數(shù)列{an}中,已知a4+a7+a10=15,$\sum_{i=4}^{14}$ai=77.若ak=13,則正整數(shù)k的值為15.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知正六邊形ABCDEF的邊長為1,則$\overrightarrow{AF}$•$\overrightarrow{BD}$的值為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案