相關(guān)習(xí)題
 0  239937  239945  239951  239955  239961  239963  239967  239973  239975  239981  239987  239991  239993  239997  240003  240005  240011  240015  240017  240021  240023  240027  240029  240031  240032  240033  240035  240036  240037  240039  240041  240045  240047  240051  240053  240057  240063  240065  240071  240075  240077  240081  240087  240093  240095  240101  240105  240107  240113  240117  240123  240131  266669 

科目: 來源: 題型:選擇題

19.己知某幾何體的三視圖如圖所示,則其表面積為( 。
A.6+4$\sqrt{2}$B.4+4$\sqrt{2}$C.2D.8

查看答案和解析>>

科目: 來源: 題型:填空題

18.函數(shù)y=lg(x2-3x+m)的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是($\frac{9}{4}$,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知不等式|x-a|+|2x-3|>$\frac{a^2}{2}$.
(1)已知a=2,求不等式的解集;
(2)已知不等式的解集為R,求a的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率e=$\frac{{\sqrt{3}}}{2}$,左、右焦點(diǎn)分別為F1、F2,A是橢圓在第一象限上的一個(gè)動(dòng)點(diǎn),圓C與F1A的延長線,F(xiàn)1F2的延長線以及線段AF2都相切,M(2,0)為一個(gè)切點(diǎn).
(1)求橢圓方程;
(2)設(shè)$N({\frac{{\sqrt{3}}}{2},0})$,過F2且不垂直于坐標(biāo)軸的動(dòng)點(diǎn)直線l交橢圓于P,Q兩點(diǎn),若以NP,NQ為鄰邊的平行四邊形是菱形,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{{{2^x}+2}}{2},x≤1\\|ln({x-1})|,x>1\end{array}$,則函數(shù)F(x)=f[f(x)]-af(x)-$\frac{3}{2}$的零點(diǎn)個(gè)數(shù)是4個(gè)時(shí),下列選項(xiàng)是a的取值范圍的子集的是( 。
A.$({\frac{1}{2},+∞})∪\left\{{\frac{ln2}{2}}\right\}$B.$[{\frac{ln2}{2},+∞})$C.$({0,\frac{1}{2}})∪\left\{{\frac{ln2}{2}}\right\}$D.$[{\frac{ln2}{2},\frac{1}{2}})$

查看答案和解析>>

科目: 來源: 題型:解答題

14.函數(shù)f(x)=lnx+$\frac{1}{2}{x^2}$+ax(a∈R),g(x)=ex+$\frac{3}{2}{x^2}$.
(1)討論f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若對于?x>0,總有f(x)≤g(x).(i)求實(shí)數(shù)a的取值范圍;(ii)求證:對于?x>0,不等式ex+x2-(e+1)x+$\frac{e}{x}$>2成立.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.我國古代數(shù)學(xué)家祖暅提出的祖暅原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個(gè)同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與三視圖(如圖所示)所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( 。
A.8-2πB.8-πC.$4-\frac{π}{2}$D.$8-\frac{4π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.運(yùn)行如圖所示的程序框圖,則輸出結(jié)果為( 。
A.2017B.2016C.1009D.1008

查看答案和解析>>

科目: 來源: 題型:填空題

11.點(diǎn)P在曲線$\frac{x^2}{2}-{y^2}$=1上,點(diǎn)Q在曲線x2+(y-3)2=4上,線段PQ的中點(diǎn)為M,O是坐標(biāo)原點(diǎn),則線段OM長的最小值是$\sqrt{2}$-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)的f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}≤φ≤\frac{π}{2}$)圖象關(guān)于直線x=$\frac{π}{3}$對稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,若$f(\frac{α}{2})=\frac{{\sqrt{3}}}{4}$(0<α<π),則$sin(\frac{5π}{3}-α)$=( 。
A.$-\frac{{\sqrt{15}}}{4}$B.$\frac{{\sqrt{15}}}{4}$C.$±\frac{{\sqrt{15}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習(xí)冊答案