相關(guān)習(xí)題
 0  240207  240215  240221  240225  240231  240233  240237  240243  240245  240251  240257  240261  240263  240267  240273  240275  240281  240285  240287  240291  240293  240297  240299  240301  240302  240303  240305  240306  240307  240309  240311  240315  240317  240321  240323  240327  240333  240335  240341  240345  240347  240351  240357  240363  240365  240371  240375  240377  240383  240387  240393  240401  266669 

科目: 來源: 題型:選擇題

16.已知關(guān)于x的方程x2+(a+1)x+a+b+1=0的兩個實(shí)根分別為一個橢圓,一個雙曲線的離心率,則$\frac{a}$的取值范圍( 。
A.$(-1,-\frac{1}{2})$B.(-1,0)C.(-2,+∞)D.$(-2,-\frac{1}{2})$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.任取a∈(-5,5),則函數(shù)f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上單調(diào)遞減的概率為( 。
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ=8cosθ+6sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=at+1}\end{array}\right.$(t為參數(shù),a為實(shí)常數(shù)).
(1)若a=-1,求直線l與圓C的所有公共點(diǎn);
(2)若直線l與圓C相交,截得弦長為2$\sqrt{7}$,求a的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知角α終邊上一點(diǎn)P(-2,3),則$\frac{cos(\frac{π}{2}+α)sin(π+α)}{cos(π-α)sin(3π-α)}$的值為( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,且直線${l_1}:\frac{x}{a}+\frac{y}=1$被橢圓C1截得的弦長為$\sqrt{7}$.
(I)求橢圓C1的方程;
(II)以橢圓C1的長軸為直徑作圓C2,過直線l2:y=4上的動點(diǎn)M作圓C2的兩條切線,設(shè)切點(diǎn)為A,B,若直線AB與橢圓C1交于不同的兩點(diǎn)C,D,求|CD|•|AB|的取信范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.若x2017=a0+a1(x-1)+a2(x-1)2+…a2017(x-1)2017,則$\frac{{a}_{1}}{3}+\frac{{a}_{2}}{{3}^{2}}+…+\frac{{a}_{2017}}{{3}^{2017}}$=($\frac{4}{3}$)2017-1.

查看答案和解析>>

科目: 來源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸長為2$\sqrt{2}$,P為橢圓C上異于頂點(diǎn)的一個動點(diǎn),O為坐標(biāo)原點(diǎn),A2為橢圓C的右頂點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與直線OM的斜率之積為-$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓C于兩點(diǎn)A,B,線段AB的垂直平分線與x軸交于點(diǎn)N,N點(diǎn)的橫坐標(biāo)的取值范圍是$({-\frac{1}{4},0})$,求線段AB的長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

9.在平面內(nèi),Rt△ABC中,BA⊥CA,有結(jié)論BC2=AC2+AB2,空間中,在四面體V-BCD中,VB,VC,VD兩兩互相垂直,且側(cè)面的3個三角形面積分別記為S1,S2,S3,底面△BCD的面積記為S,類比平面可得到空間四面體的一個結(jié)論是$S_{△BCD}^2=S_{△VBC}^2+S_{△VCD}^2+S_{△VDB}^2$$⇒{S^2}=S_1^2+S_2^2+S_3^2$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.設(shè)集合M={x|y=$\sqrt{lo{g}_{\frac{1}{2}}x-1}$},N={x||x-$\frac{1}{2}$|≤$\frac{1}{4}$},則M∩N=( 。
A.[2,+∞)B.[-1,$\frac{3}{4}$]C.[$\frac{1}{4}$,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設(shè)O,A,B為平面上三點(diǎn),且點(diǎn)P在直線AB上,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n=( 。
A.0B.-1C.1D.不能確定

查看答案和解析>>

同步練習(xí)冊答案