相關(guān)習(xí)題
 0  240345  240353  240359  240363  240369  240371  240375  240381  240383  240389  240395  240399  240401  240405  240411  240413  240419  240423  240425  240429  240431  240435  240437  240439  240440  240441  240443  240444  240445  240447  240449  240453  240455  240459  240461  240465  240471  240473  240479  240483  240485  240489  240495  240501  240503  240509  240513  240515  240521  240525  240531  240539  266669 

科目: 來源: 題型:選擇題

14.已知定義域為R的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f'(x),當(dāng)x≠0時,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f({\frac{1}{2}}),b=-2f({-2}),c=-ln2f({ln\frac{1}{2}})$,則a,b,c的大小關(guān)系正確的是( 。
A.b<c<aB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域[-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)f′(x),的圖象如圖所示,
 x-10245
f(x)141.541
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域為[1,4];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時,f(x)的最大值是4,那么t的最大值為4;
④當(dāng)1<a<4時,函數(shù)y=f(x)-a最多有4個零點(diǎn).
其中正確的命題個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和Sn滿足:Sn=2an-2n(n∈N*).
(1)求證:數(shù)列{an+2}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項和,求證:Tn≥$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)數(shù)列{xn}滿足xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求證:{xn+1}是等比數(shù)列,并求出數(shù)列{xn}的通項公式;
(2)對任意的正整數(shù)n,當(dāng)m∈[-1,1]時,不等式$3{t^2}-6mt+\frac{1}{2}>\frac{1}{x_n}$恒成立,求實(shí)數(shù)t的取值范圍;
(3)求證:$\frac{1}{x_1}+\frac{1}{x_2}+…+\frac{1}{x_n}<\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知直線m,n和平面α,β,則下列四個命題中正確的是(  )
A.若α⊥β,m?β,則m⊥αB.若m⊥α,n∥α,則m⊥nC.若m∥α,n∥m,則n∥αD.若m∥α,m∥β,則α∥β

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的圖象上有一點(diǎn)列Pn(xn,yn)(n∈N*),點(diǎn)Pn在x軸上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求證:{xn+1}是等比數(shù)列,并求出數(shù)列{xn}的通項公式;
(2)對任意的正整數(shù)n,當(dāng)m∈[-1,1]時,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)四邊形PnQnQn+1Pn+1的表面積是Sn,求證:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,不等式${x^2}cosC+2xsinC+\frac{3}{2}≥0$對一切實(shí)數(shù)x恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長為9時,求△ABC面積的最大值,并指出面積取最大值時△ABC的形狀.

查看答案和解析>>

科目: 來源: 題型:填空題

7.設(shè)正數(shù)a,b滿足a+2b=2,則$\frac{2}{a}+\frac{1}$的最小值為4.

查看答案和解析>>

科目: 來源: 題型:填空題

6.如圖,雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)F1(-c,0),F(xiàn)2(c,0),A為雙曲線C右支上一點(diǎn),且OA=c,AF1與y軸交于點(diǎn)B,若F2B是∠AF2F1的角平分線,則雙曲線C的離心率是1+$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.設(shè)y=f(x)為定義在[-1,1]上的函數(shù),且滿足條件:①f(-1)=f(1)=0,②對任意u、v∈[-1,1],恒有|f(u)-f(v)|≤|u-v|,則以下結(jié)論正確的為( 。
A.存在u,v∈[-1,1],使|f(u)-f(v)|>1B.存在x0∈[-1,1],使f(x0)>1-x0
C.存在x0∈[-1,1],使f(x0)<x0-1D.對任意x∈[-1,1],有f(x)≤1-x

查看答案和解析>>

同步練習(xí)冊答案