相關(guān)習(xí)題
 0  240488  240496  240502  240506  240512  240514  240518  240524  240526  240532  240538  240542  240544  240548  240554  240556  240562  240566  240568  240572  240574  240578  240580  240582  240583  240584  240586  240587  240588  240590  240592  240596  240598  240602  240604  240608  240614  240616  240622  240626  240628  240632  240638  240644  240646  240652  240656  240658  240664  240668  240674  240682  266669 

科目: 來源: 題型:填空題

18.函數(shù)f(x)=$\sqrt{2x+5}$的定義域是[-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

17.如圖是市兒童樂園里一塊平行四邊形草地ABCD,樂園管理處準備過線段AB上一點E設(shè)計一條直線EF(點F在邊BC或CD上,不計路的寬度),將該草地分為面積之比為2:1的左、右兩部分,分別種植不同的花卉.經(jīng)測量得AB=18m,BC=10m,∠ABC=120°.設(shè)EB=x,EF=y(單位:m).
(1)當點F與C重合時,試確定點E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)請確定點E、F的位置,使直路EF長度最短.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)命題p:實數(shù)滿足x2-4ax+3a2<0,a≠0;命題q:實數(shù)滿足$\frac{x-3}{2-x}$≥0.
(1)若a=1,p∧q為真命題,求x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.對于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個“可等域區(qū)間”.給出下列四個函數(shù):
①f(x)=sin${\;}^{\frac{π}{2}}$x;②f(x)=2x2-1;③f(x)=|1-2x|
其中存在“可等域區(qū)間”的“可等域函數(shù)”為( 。
A.B.C.①②D.①②③

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知命題p:“x<0”是“x+1<0”的充分不必要條件,命題q:“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,則下列命題是真命題的是(  )
A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目: 來源: 題型:填空題

13.設(shè)0<x<2,函數(shù)f(x)=$\sqrt{3x•(8-3x})$的最大值是4.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知某8個數(shù)據(jù)的平均數(shù)為5,方差為3,現(xiàn)又加入一個新數(shù)據(jù)5,此時這9個數(shù)的平均數(shù)為$\overline{x}$,方差為s2,則(  )
A.$\overline{x}$=5,s2>3B.$\overline{x}$=5,s2<3C.$\overline{x}$>5,s2<3D.$\overline{x}$>5,s2>3

查看答案和解析>>

科目: 來源: 題型:填空題

11.函數(shù)y=$\frac{{e}^{x}}{x}$在區(qū)間[$\frac{1}{2}$,e]上的最小值是e.

查看答案和解析>>

科目: 來源: 題型:填空題

10.在數(shù)列{an}中,a1=1,an+1=2an+1,猜想這個數(shù)列的通項公式是${a}_{n}={2}^{n}-1$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知A,B,C為銳角△ABC的內(nèi)角,$\overrightarrow{a}$=(sinA,sinBsinC),$\overrightarrow$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow$.
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

同步練習(xí)冊答案