科目: 來源: 題型:
【題目】省環(huán)保廳對、、三個城市同時進(jìn)行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據(jù)中隨機(jī)抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個數(shù);
(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= 若方程f(x)=a|x﹣1|,(a∈R)有且僅有兩個不相等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】三國時期吳國的數(shù)學(xué)家趙爽曾創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個全等的直角三角形與中間的小正方形拼成一個大正方形,其中一個直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機(jī)投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當(dāng)x≥0時,f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)為彼此不重合的三個平面,為直線,給出下列結(jié)論:
①若 ,則 ②若,且 則
③若直線與平面內(nèi)的無數(shù)條直線垂直,則
④若內(nèi)存在不共線的三點(diǎn)到的距離相等,則
上面結(jié)論中,正確的序號為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在直角坐標(biāo)系中, 直線的參數(shù)方程為是為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系, 曲線的極坐標(biāo)方程為.
(1) 判斷直線與曲線的位置關(guān)系;
(2) 在曲線上求一點(diǎn),使得它到直線的距離最大,并求出最大距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓方程()的離心率為, 短軸長為2.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線()與軸的交點(diǎn)為(點(diǎn)不在橢圓外), 且與橢圓交于兩個不同的點(diǎn). 若線段的中垂線恰好經(jīng)過橢圓的下端點(diǎn), 且與線段交于點(diǎn), 求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com