科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,,點M在邊DC上,點F在邊AB上,且,垂足為E,若將沿AM折起,使點D位于位置,連接,得四棱錐.
Ⅰ求證:;
Ⅱ若,直線與平面ABCM所成角的大小為,求直線與平面ABCM所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且PA=AD=2, ,E、F分別為AD、PC中點.
(1)求點F到平面PAB的距離;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E﹣PC﹣D的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)列{an}中,設f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設 ,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖是某市3月1日至14日的空氣質量指數(shù)趨勢圖,空氣質量指數(shù)小于100表示空氣質量優(yōu)良,空氣質量指數(shù)大于200表示空氣重度污染,某人隨機選擇3月1日至3月15日中的某一天到達該市,并停留2天.
(Ⅰ)求此人到達當日空氣質量優(yōu)良的概率;
(Ⅱ)求此人在該市停留期間只有1天空氣重度污染的概率;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質量指數(shù)方差最大?(結論不要求證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】某校書法興趣組有3名男同學A,B,C和3名女同學X,Y,Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學 | A | B | C |
女同學 | X | Y | Z |
現(xiàn)從這6名同學中隨機選出2人參加書法比賽每人被選到的可能性相同.
用表中字母列舉出所有可能的結果;
設M為事件“選出的2人來自不同年級且性別相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為4的正三角形ABC中,D,E,F分別為各邊的中點,G,H分別為DE,AF的中點,將沿DE,EF,DF折成正四面體,則在此正四面體中,下列說法正確的是______.
異面直線PG與DH所成的角的余弦值為;
;
與PD所成的角為;
與EF所成角為
查看答案和解析>>
科目: 來源: 題型:
【題目】若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為 ,則下列命題是真命題的是( )
A.p∧q
B.(p)∧q
C.p∧(q)
D.q
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線
(1)若曲線C1是一個圓,且點P(1,1)在圓C1外,求實數(shù)m的取值范圍;
(2)當m=2時,曲線關于直線x+1=0對稱的曲線為,設P為平面上的點,滿足:存在過P點的無窮多對互相垂直的直線,它們分別與曲線C1和曲線相交,且直線被曲線C1截得的弦長與直線l2被曲線C2截得的弦長總相等.求所有滿足條件的點P的坐標;
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù) 的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,則下列關于g(x)敘述正確的是( )
A.g(x)的最小正周期為2π
B.g(x)在 內單調遞增
C.g(x)的圖象關于 對稱
D.g(x)的圖象關于 對稱
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-5:不等式選講
已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N* , 存在實數(shù)x使f(x)<2成立.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求證: + ≥ .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com