科目: 來源: 題型:
【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使得Sn達(dá)到最大值的n是( )
A.21
B.20
C.19
D.18
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)=(1﹣m)lnx++nx(m,n是常數(shù)).
(1)若m=0,且f(x)在(1,2)上單調(diào)遞減,求n的取值范圍;
(2)若m>0,且n=﹣1,求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A(,﹣1),B(2,1),函數(shù)f(x)=log2x.
(1)過原點O作曲線y=f(x)的切線,求切線的方程;
(2)曲線y=f(x)(≤x≤2)上是否存在點P,使得過P的切線與直線AB平行?若存在,則求出點P的橫坐標(biāo),若不存在,則請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn , 若a7>0,a8<0,則下列結(jié)論正確的是( )
A.S7<S8
B.S15<S16
C.S13>0
D.S15>0
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線y=﹣2x+1與圓O:x2+y2=r2(r>0)交于M,N兩點,且MN=.
(1)求M,N的坐標(biāo);
(2)求過O,M,N三點的圓的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) ,若存在x0 , 使得 ,則x0稱是函數(shù) 的一個不動點,設(shè)
(1)求函數(shù) 的不動點;
(2)對(1)中的二個不動點a、b(假設(shè)a>b),求使 恒成立的常數(shù)k的值;
(3)對由a1=1,an= 定義的數(shù)列{an},求其通項公式an .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知p:方程表示雙曲線,q:表示焦點在x軸上的橢圓.
(1)若“p且q”是真命題,求實數(shù)m的取值范圍;
(2)若“p且q”是假命題,“p或q”是真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在圓上任取一點,過點向軸作垂線段,垂足為,當(dāng)點在圓上運動時,線段的中點的軌跡為.
(1)求曲線的方程;
(2)過點(0,-2)作直線與交于兩點,(O為原點),求三角形面積的最大值,并求此時的直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分店時,才能使區(qū)平均每個店的年利潤最大?
(參考公式: ,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com