科目: 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點D為BC的中點;
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點E為A1C上的點,且滿足 =m (m∈R),若二面角E﹣AD﹣C的余弦值為 ,求實數(shù)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,”延遲退休“已經(jīng)成為人們越來越關注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學習小組在某社區(qū)隨機抽取了50人進行調查,將調查情況進行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調查年齡在[25,30),[55,60)的被調查者中贊成人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調查者中各隨機選取2人,進行跟蹤調查.
(Ⅰ)求年齡在[25,30)的被調查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,VP﹣ABC= ,∠APC= ,∠BPC= ,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P﹣ABC外接球的體積為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)f(x)在R上的導函數(shù)為f′(x),對x∈R有f(x)+f(﹣x)=x2 , 在(0,+∞)上f′(x)﹣x<0,若f(4﹣m)﹣f(m)≥8﹣4m,則實數(shù)m的取值范圍是( )
A.[2,+∞)
B.(﹣∞,2]
C.(﹣∞,2]∪[2,+∞)
D.[﹣2,2]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F1、F2為雙曲線C: (a>0,b>0)的左、右焦點,點P為雙曲線C右支上一點,直線PF1與圓x2+y2=a2相切,且|PF2|=|F1F2|,則雙曲線C的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C:(x﹣ )2+(y﹣1)2=1和兩點A(﹣t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則當t取得最大值時,點P的坐標是( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖中的程序框圖的算法思路來源于我國古代數(shù)學名著《九章算術》中的”更相減損術“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時,則輸出的i=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函f(x)=sin(2x﹣ )﹣cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期、最大值及取得最大值時x的集合;
(Ⅱ)設△ABC內角A、B、C的對邊分別為a、b、c,若 ,b=1, ,且a>b,求角B和角C.
查看答案和解析>>
科目: 來源: 題型:
【題目】調查表明:甲種農(nóng)作物的長勢與海拔高度、土壤酸堿度、空氣濕度的指標有極強的相關性,現(xiàn)將這三項的指標分別記為x,y,z,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標ω=x+y+z的值評定這種農(nóng)作物的長勢等級,若ω≥4,則長勢為一級;若2≤ω≤3,則長勢為二級;若0≤ω≤1,則長勢為三級,為了了解目前這種農(nóng)作物長勢情況,研究人員隨機抽取10塊種植地,得到如表中結果:
種植地編號 | A1 | A2 | A3 | A4 | A5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) |
種植地編號 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅰ)在這10塊該農(nóng)作物的種植地中任取兩塊地,求這兩塊地的空氣濕度的指標z相同的概率;
(Ⅱ)從長勢等級是一級的種植地中任取一塊地,其綜合指標為A,從長勢等級不是一級的種植地中任取一塊地,其綜合指標為B,記隨機變量X=A﹣B,求X的分布列及其數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在邊長為 的正方形ABCD中,E、O分別為 AD、BC的中點,沿 EO將矩形ABOE折起使得∠BOC=120°,如圖2所示,點G 在BC上,BG=2GC,M、N分別為AB、EG中點.
(Ⅰ)求證:MN∥平面OBC;
(Ⅱ)求二面角 G﹣ME﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com