科目: 來源: 題型:
【題目】若一條直線與一個平面成72°角,則這條直線與這個平面內(nèi)經(jīng)過斜足的直線所成角中最大角等于( )
A.72°
B.90°
C.108°
D.180°
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C 的參數(shù)方程為 (α為參數(shù)),以直角坐標系原點O 為極點,x 軸正半軸為極軸建立極坐標系. (Ⅰ)求曲線C 的極坐標方程;
(Ⅱ)設(shè)l1:θ= ,l2:θ= ,若l 1、l2與曲線C 相交于異于原點的兩點 A、B,求△AOB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= (a,b∈R)在點 (2,f(2)) 處切線的斜率為﹣ ﹣ln 2,且函數(shù)過點(4, ). (Ⅰ)求a、b 的值及函數(shù) f (x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= (k∈N*),對任意的實數(shù)x0>1,都存在實數(shù)x1 , x2滿足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了解該校高三年級學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對廣一?荚嚁(shù)學(xué)成績進行分析,從中抽取了n 名學(xué)生的成績作為樣本進行統(tǒng)計(該校全體學(xué)生的成績均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.
根據(jù)上級統(tǒng)計劃出預(yù)錄分數(shù)線,有下列分數(shù)與可能被錄取院校層次對照表為表( c ).
分數(shù) | [50,85] | [85,110] | [110,150] |
可能被錄取院校層次 | 專科 | 本科 | 重本 |
(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學(xué)生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和?苾蓚層次的學(xué)生中隨機抽取3 名學(xué)生進行調(diào)研,用ξ表示所抽取的3 名學(xué)生中為重本的人數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的幾何體中,平面ACE⊥平面ABCD,四邊形ABCD 為平行四邊形,∠CAD=90°,EF∥BC,EF= BC,AC= ,AE=EC=1.
(1)求證:CE⊥AF;
(2)若二面角E﹣AC﹣F 的余弦值為 ,求點D 到平面ACF 的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)Sn為各項不相等的等差數(shù)列an的前n 項和,已知a3a8=3a11 , S3=9.
(1)求數(shù)列{an}的通項公式;
(2)若bn= ,數(shù)列{bn}的前n 項和為Tn , 求 的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)△ABC 的內(nèi)角 A,B,C 的對邊分別是a,b,c,且 a= b cosC+c sinB. (Ⅰ)求角B 的大;
(Ⅱ)若點M 為BC的中點,且 AM=AC,求sin∠BAC.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c有兩個極值點x1 , x2 , 若x2<f(x1)<x1 , 則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實根個數(shù)可能為( )
A.3,4,5
B.4,5,6
C.2,4,5
D.2,3,4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com