科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+φ),且f(0)=1,f′(0)<0,則函數(shù) 圖象的一條對稱軸的方程為( )
A.x=0
B.x=
C.x=
D.x=
查看答案和解析>>
科目: 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是8,則判斷框內(nèi)m的取值范圍是( )
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)
查看答案和解析>>
科目: 來源: 題型:
【題目】以下排列的數(shù)是二項式系數(shù)在三角形中的幾何排列,在我國南宋數(shù)學(xué)家楊輝1261年所著 的《詳解九章算法》一書里就出現(xiàn)了.在歐洲,這個表叫做帕斯卡三角形,它出現(xiàn)要比楊輝遲393年. 那么,第2017行第2016個數(shù)是( )
A.2016
B.2017
C.2033136
D.2030112
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(1)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(2)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=e2x+ln(x+a).
(1)當(dāng)a=1時,①求f(x)在(0,1)處的切線方程;②當(dāng)x≥0時,求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為F,過橢圓C中心的弦PQ長為2,且∠PFQ=90°,△PQF的面積為1.
(1)求橢圓C的方程;
(2)設(shè)A1、A2分別為橢圓C的左、右頂點(diǎn),S為直線 上一動點(diǎn),直線A1S交橢圓C于點(diǎn)M,直線A2S交橢圓于點(diǎn)N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,
求 的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點(diǎn), .
(1)λ為何值時,MN∥平面ABC?
(2)在(1)的條件下,求直線AN與平面BMN所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費(fèi),超過x的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知 是函數(shù)f(x)=msinωx﹣cosωx(m>0)的一條對稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)角A,B,C為△ABC的三個內(nèi)角,對應(yīng)邊分別為a,b,c,若f(B)=2, ,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com