相關(guān)習(xí)題
 0  260879  260887  260893  260897  260903  260905  260909  260915  260917  260923  260929  260933  260935  260939  260945  260947  260953  260957  260959  260963  260965  260969  260971  260973  260974  260975  260977  260978  260979  260981  260983  260987  260989  260993  260995  260999  261005  261007  261013  261017  261019  261023  261029  261035  261037  261043  261047  261049  261055  261059  261065  261073  266669 

科目: 來源: 題型:

【題目】某港口有一個泊位,現(xiàn)統(tǒng)計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果?繒r間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統(tǒng)計結(jié)果如表:

?繒r間

2.5

3

3.5

4

4.5

5

5.5

6

輪船數(shù)量

12

12

17

20

15

13

8

3

(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r間為小時,求的值;

(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位停靠小時,且在一晝夜的時間段中隨機到達,求這兩艘輪船中至少有一艘在?吭摬次粫r必須等待的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有m個()實數(shù),它們滿足下列條件:①,

記這m個實數(shù)的和為

.

1)若,證明: ;

2)若m=5,滿足題設(shè)條件的5個實數(shù)構(gòu)成數(shù)列.設(shè)C為所有滿足題設(shè)條件的數(shù)列構(gòu)成的集合.集合,求A中所有正數(shù)之和;

3)對滿足題設(shè)條件的m個實數(shù)構(gòu)成的兩個不同數(shù)列,證明: .

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù).

1)求曲線在點處的切線方程;

2)若在區(qū)間上恒成立,求a的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系中,已直曲線,將曲線C上的點向左平移一個單位,然后縱坐標不變,橫坐標伸長到原來的2倍,得到曲線C1,又已知直線,且直線C1交于A、B兩點,

1求曲線C1的直角坐標方程,并說明它是什么曲線;

2)設(shè)定點, 求的值;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量,

1求函數(shù)的最小正周期及取得最大值時對應(yīng)的x的值;

2在銳角三角形ABC中,角AB、C的對邊為a、b、c,若,求三角形ABC面積的最大值并說明此時該三角形的形狀.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系中,已直曲線,將曲線C上的點向左平移一個單位,然后縱坐標不變,橫坐標伸長到原來的2倍,得到曲線C1,又已知直線,且直線C1交于A、B兩點,

1求曲線C1的直角坐標方程,并說明它是什么曲線;

2)設(shè)定點, 求的值;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中為常數(shù), 為自然對數(shù)的底數(shù).

1)若在區(qū)間上的最大值為,求的值;

2)當(dāng)時,判斷方程是否有實根?若無實根請說明理由,若有實根請給出根的個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.

1)求出動點P的軌跡對應(yīng)曲線C的標準方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖在棱錐中, 為矩形, , , 與面角, 與面角.

1)在上是否存在一點,使,若存在確定點位置,若不存在,請說明理由;

2)當(dāng)中點時,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為。

1)求、的值;

2)如果當(dāng),且時, ,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案