相關(guān)習(xí)題
 0  260917  260925  260931  260935  260941  260943  260947  260953  260955  260961  260967  260971  260973  260977  260983  260985  260991  260995  260997  261001  261003  261007  261009  261011  261012  261013  261015  261016  261017  261019  261021  261025  261027  261031  261033  261037  261043  261045  261051  261055  261057  261061  261067  261073  261075  261081  261085  261087  261093  261097  261103  261111  266669 

科目: 來源: 題型:

【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為

A. 11π B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點的直線交于兩點,與交于兩點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點的直線交于,兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形,.

(1)證明:

(2)設(shè)是線段上的動點,是否存在這樣的點,使得二面角的余弦值為,如果存在,求出的長;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,記隨機變量表示質(zhì)量在內(nèi)的芒果個數(shù),求的分布列及數(shù)學(xué)期望.

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購芒果,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,已知點為曲線上的動點,點在線段上,且滿足,動點的軌跡為.

(1)求的直角坐標(biāo)方程;

(2)設(shè)點的極坐標(biāo)為,點在曲線上,求的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1)求函數(shù)的零點個數(shù);

(2)證明:當(dāng),函數(shù)有最小值,設(shè)的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)點為圓上的動點,點軸上的投影為,動點滿足,動點的軌跡為.

(1)求的方程;

(2)設(shè)軸正半軸的交點為,過點的直線的斜率為,交于另一點為.若以點為圓心,以線段長為半徑的圓與有4個公共點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案