相關(guān)習(xí)題
 0  261031  261039  261045  261049  261055  261057  261061  261067  261069  261075  261081  261085  261087  261091  261097  261099  261105  261109  261111  261115  261117  261121  261123  261125  261126  261127  261129  261130  261131  261133  261135  261139  261141  261145  261147  261151  261157  261159  261165  261169  261171  261175  261181  261187  261189  261195  261199  261201  261207  261211  261217  261225  266669 

科目: 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓

)求的方程.

)設(shè)直線不經(jīng)過點且與相交于兩點,若直線與直線的斜率的和為,

證明: 過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐中,底面是直角梯形, , 平面平面

Ⅰ)求證: 平面

Ⅱ)求平面和平面所成二面角(小于)的大。

Ⅲ)在棱上是否存在點使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在某批次的某種燈泡中,隨機(jī)地抽取個樣品,并對其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)

頻數(shù)

頻率

合計

Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出 的值.

Ⅱ)某人從燈泡樣品中隨機(jī)地購買了個,求個燈泡中恰有一個是優(yōu)等品的概率.

Ⅲ)某人從這個批次的燈泡中隨機(jī)地購買了個進(jìn)行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線C1y=cosxC2y=sin2x+),則下面結(jié)論正確的是( 。

A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax2axxln x,且f(x)≥0.

(1)a;

(2)證明:f(x)存在唯一的極大值點x0,且e2<f(x0)<22

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓E: 的焦點在x軸上,A是E的左頂點,斜率為k(k0)的直線交E于A,M兩點,點N在E上,MANA

(1)當(dāng)t=4,|AM|=|AN|時,求AMN的面積;

(2)當(dāng)2|AM|=|AN|時,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分別是AB、BC的中點,證明A1、C1、F、E四點共面,并求直線CD1與平面A1C1FE所成的角的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項公式;

(2)若T3=21,求S3

查看答案和解析>>

科目: 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊答案