科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在和處的切線相互平行,求的值;
(2)試討論的單調(diào)性;
(3)設,對任意的,均存在,使得.試求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】公元2222年,有一種高危傳染病在全球范圍內(nèi)蔓延,被感染者的潛伏期可以長達10年,期間會有約0.05%的概率傳染給他人,一旦發(fā)病三天內(nèi)即死亡,某城市總人口約200萬人,專家分析其中約有1000名傳染者,為了防止疾病繼續(xù)擴散,疾病預防控制中心現(xiàn)決定對全市人口進行血液檢測以篩選出被感染者,由于檢測試劑十分昂貴且數(shù)量有限,需要將血樣混合后一起檢測以節(jié)約試劑,已知感染者的檢測結果為陽性,末被感染者為陰性,另外檢測結果為陽性的血樣與檢測結果為陰性的血樣混合后檢測結果為陽性,同一檢測結果的血樣混合后結果不發(fā)生改變.
(1)若對全市人口進行平均分組,同一分組的血樣將被混合到一起檢測,若發(fā)現(xiàn)結果為陽性, 則再在該分組內(nèi)逐個檢測排査,設每個組個人,那么最壞情況下,需要進行多少次檢測可以找到所有的被感染者?在當前方案下,若要使檢測的次數(shù)盡可能少,每個分組的最優(yōu)人數(shù)?
(2)在(1)的檢測方案中,對于檢測結果為陽性的組來取逐一檢測排査的方法并不是很好, 或可將這些組的血樣再進行一次分組混合血樣檢測,然后再進行逐一排査,仍然考慮最壞的情況,請問兩次要如何分組,使檢測總次數(shù)盡可能少?
(3)在(2)的檢測方案中,進行了兩次分組混合血樣檢測,仍然考慮最壞情況,若再進行若干次分組混合血樣檢測,是否會使檢測次數(shù)更少?請給出最優(yōu)的檢測方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為( )
A.①②B.①②④C.③④D.①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)在處的切線與直線平行.
(1)求實數(shù);
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設,當時, 恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)(個) | ||||
加工的時間(小時) |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出關于的線性回歸方程.
(3)試預測加工個零件需要多少時間?
附錄:參考公式: ,.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, ,其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,分別求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】
按照某學者的理論,假設一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為和,則他對這兩種交易的綜合滿意度為.
現(xiàn)假設甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設產(chǎn)品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為
(1)求和關于、的表達式;當時,求證:=;
(2)設,當、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?(3)記(2)中最大的綜合滿意度為,試問能否適當選取、的值,使得和同時成立,但等號不同時成立?試說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com