科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使()成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=.
(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在一個周期內(nèi)的簡圖如圖所示,則函數(shù)的解析式為___________,方程的實根個數(shù)為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:,過上一動點作軸,垂足為點.當點滿足時,點的軌跡恰是一個圓.
(1)求橢圓的離心率;
(2)若與曲線切于點的直線與橢圓交于,兩點,且當軸時,,求的最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠生產(chǎn)甲,乙兩種圖畫紙,計劃每種圖畫紙的生產(chǎn)量不少于8t,已知生產(chǎn)甲種圖畫紙1t要用蘆葦7t、黃麻3t、楓樹5t;生產(chǎn)乙種圖畫紙1t要用蘆葦3t、黃麻4t、楓樹8 t.現(xiàn)在倉庫內(nèi)有蘆葦300t、黃麻150t.楓樹200t,試列出滿足題意的不等式組.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)對現(xiàn)有設(shè)備進行了改造,為了了解設(shè)備改造后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測其質(zhì)量指標值,若質(zhì)量指標值在內(nèi),則該產(chǎn)品視為合格品,否則視為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.
(1)完成列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設(shè)備改造有關(guān):
設(shè)備改造前 | 設(shè)備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設(shè)備的優(yōu)劣進行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件售價180元;質(zhì)量指標值落在或內(nèi)的定為二等品,每件售價150元;其他的合格品定為三等品,每件售價120元.根據(jù)頻數(shù)分布表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設(shè)其支付的費用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在進行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3次,設(shè)分別表示甲,乙,丙3個盒中的球數(shù).
(Ⅰ)求的概率;
(Ⅱ)記求隨機變量的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】我校為了解學(xué)生喜歡通用技術(shù)課程“機器人制作”是否與學(xué)生性別有關(guān),采用簡單隨機抽樣的辦法在我校高一年級抽出一個有60人的班級進行問卷調(diào)查,得到如下的列聯(lián)表:
喜歡 | 不喜歡 | 合計 | |
男生 | 18 | ||
女生 | 6 | ||
合計 | 60 |
已知從該班隨機抽取1人為喜歡的概率是.
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認為“喜歡與否和學(xué)生性別有關(guān)”?請說明理由.
參考臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com