科目: 來源: 題型:
【題目】某研究機(jī)構(gòu)為了了解各年齡層對高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】使用支付寶和微信支付已經(jīng)成為廣大消費者最主要的消費支付方式,某超市通過統(tǒng)計發(fā)現(xiàn)一周內(nèi)超市每天的凈利潤(萬元)與每天使用支付寶和微信支付的人數(shù)(千人)具有相關(guān)關(guān)系,并得到最近一周的7組數(shù)據(jù)如下表,并依此作為決策依據(jù).
周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
13 | 16 | 26 | 22 | 25 | 29 | 30 |
7 | 11 | 15 | 22 | 24 | 27 | 34 |
(Ⅰ)作出散點圖,判斷與哪一個適合作為每天凈利潤的回歸方程類型?并求出回歸方程(,,,精確到);
(Ⅱ)超市為了刺激周一消費,擬在周一開展使用支付寶和微信支付隨機(jī)抽獎活動,總獎金7萬元.根據(jù)市場調(diào)查,抽獎活動能使使用支付寶和微信支付消費人數(shù)增加6千人,7千人,8千人,9千人的概率依次為,,,.試決策超市是否有必要開展抽獎活動?
參考數(shù)據(jù): ,,,.
參考公式:,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐試驗.受其啟發(fā),我們也可以通過設(shè)計下面的試驗來估計的值,試驗步驟如下:①先請高二年級 500名同學(xué)每人在小卡片上隨機(jī)寫下一個實數(shù)對;②若卡片上的能與1構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù)估計的值.假如本次試驗的統(tǒng)計結(jié)果是,那么可以估計的值約為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點,求曲線在點處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實數(shù)a的取值范圍;
設(shè)m,n為正實數(shù),且,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a為實數(shù),函數(shù),
若,求不等式的解集;
是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;
寫出函數(shù)在R上的零點個數(shù)不必寫出過程
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為,點的坐標(biāo)為,點在拋物線上,且滿足,(為坐標(biāo)原點).
(1)求拋物線的方程;
(2)過點作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點,與拋物線交于兩點,線段的中點分別為,求證:直線過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件A=“第一枚硬幣正面朝上”,事件B=“第二枚硬幣反面朝上”.
(1)寫出樣本空間,并列舉A和B包含的樣本點;
(2)下列結(jié)論中正確的是( ).
A.A與B互為對立事件 B.A與B互斥 C.A與B相等 D.P(A)=P(B)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的莖葉圖記錄了華潤萬家在渭南城區(qū)甲、乙連鎖店四天內(nèi)銷售情況的某項指標(biāo)統(tǒng)計:
(I)求甲、乙連鎖店這項指標(biāo)的方差,并比較甲、乙該項指標(biāo)的穩(wěn)定性;
(Ⅱ)每次都從甲、乙兩店統(tǒng)計數(shù)據(jù)中隨機(jī)各選一個進(jìn)行比對分析,共選了3次(有放回選。O(shè)選取的兩個數(shù)據(jù)中甲的數(shù)據(jù)大于乙的數(shù)據(jù)的次數(shù)為,求的分布列及數(shù)學(xué)期望
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com