相關(guān)習(xí)題
 0  261317  261325  261331  261335  261341  261343  261347  261353  261355  261361  261367  261371  261373  261377  261383  261385  261391  261395  261397  261401  261403  261407  261409  261411  261412  261413  261415  261416  261417  261419  261421  261425  261427  261431  261433  261437  261443  261445  261451  261455  261457  261461  261467  261473  261475  261481  261485  261487  261493  261497  261503  261511  266669 

科目: 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時).

I)應(yīng)收集多少位男生樣本數(shù)據(jù)?

II)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,,試估計(jì)該校學(xué)生每周平均體育運(yùn)動時間超過4個小時的概率;

(Ⅲ)在樣本數(shù)據(jù)中,有165位男生的每周平均體育運(yùn)動時間超過4個小時請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有%的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.

男生

女士

總計(jì)

每周平均體育運(yùn)動時

間不超過4小時

每周平均體育運(yùn)動時

間超過4小時

總計(jì)

附:

0.10

0.05

0.010

0.005

k

2.706

3.841

6.635

7.879

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足:

(1)求的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和;

(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點(diǎn).

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證: 為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得曲線.

寫出的參數(shù)方程;

設(shè)直線的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4,CD6,求四邊形EFGH周長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知直三棱柱的側(cè)面是正方形,點(diǎn)是側(cè)面的中心,,是棱的中點(diǎn)

(1)求證:平面;

(2)求證:平面平面

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)當(dāng)a>1,求使f(x)>0的解集.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)設(shè)集合C={x|m+1<x<2m-1},若BC=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,中點(diǎn),在平面內(nèi)的射影上,,,.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案