科目: 來源: 題型:
【題目】2019年是新中國成立70周年,也是全面建成小康社會的關鍵之年.為喜迎祖國70周年生日,全民齊心奮力建設小康社會,某校特舉辦“喜迎國慶,共建小康”知識競賽活動.下面的莖葉圖是參賽兩組選手的答題得分情況,則下列說法正確的是( )
甲 | 乙 | |||||
5 | 7 | 7 | ||||
7 | 3 | 2 | 8 | 3 | 4 | 5 |
3 | 9 | 1 |
A.甲組選手得分的平均數小于乙組選手得分的平均數.
B.甲組選手得分的中位數大于乙組選手得分的平均數.
C.甲組選手得分的中位數等于乙組選手得分的中位數.
D.甲組選手得分的方差大于乙組選手得分的方差.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分12分)
已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的距離的最
小值為,離心率為。
(I)求橢圓的方程;
(Ⅱ)過點(1,0)作直線交于、兩點,試問:在軸上是否存在一個定點,使為定值?若存在,求出這個定點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線: ,若存在實數使得一條曲線與直線有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出的四條曲線方程:
①;②;③;④.
其中直線的“絕對曲線”的條數為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知、是橢圓()的左、右焦點,過作軸的垂線與交于、
兩點, 與軸交于點, ,且, 為坐標原點.
(1)求的方程;
(2)設為橢圓上任一異于頂點的點, 、為的上、下頂點,直線、分別交軸于點、.若直線與過點、的圓切于點.試問: 是否為定值?若是,求出該定值;若不是,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),在等腰梯形中, , 是梯形的高, , ,現將梯形沿, 折起,使且,得一簡單組合體如 圖(2)示,已知, 分別為, 的中點.
(1)求證: 平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分100分)統(tǒng)計結果如下表所示.
組別 | |||||||
頻數 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數分布表可以大致認為,此次問卷調查的得分服從正態(tài)分布, 近似為這1000人得分的平均值值(同一組數據用該組數據區(qū)間的中點值表示),請用正態(tài)分布的知識求;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調查的市民制定如下獎勵方案::
(。┑梅植坏陀的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
(ⅱ)每次獲贈送的隨機話費和對應的概率為:
贈送的隨機話費(單元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
現有市民甲要參加此次問卷調查,記 (單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.
附:參考數據與公式
,若,則
①;
②;
③.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com